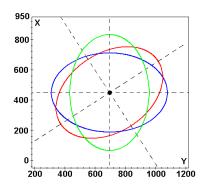
Ermittlung der abszissen- und ordinatenparallelen Ellipse



über die Singularwertzerlegung

Dipl.- Ing. Björnstjerne Zindler, M.Sc.

www.Zenithpoint.de

Erstellt: 07. Oktober 2016 – Letzte Revision: 7. Januar 2024

Inhaltsverzeichnis

1	Ermittlung der abszissen- und der ordinatenparallelen Ellipse	3									
	1.1 Einleitung zum Thema der Singularwertzerlegung	3									
	1.2 Herleitung der Singularwertzerlegung	5									
	1.3 Durchführung der Singularwertzerlegung	7									
2	Zusammenfassung der Singularwertzerlegung I	11									
3	B Erweiterungen vorhandener Berechnungsgrundlagen										
4	Zusammenfassung der Singularwertzerlegung II	14									
5	Zusammenfassung des genutzten Beispiels										

Literatur

[001] Keine für vorliegenden Text.

1 Ermittlung der abszissen- und der ordinatenparallelen Ellipse

1.1 Einleitung zum Thema der Singularwertzerlegung

Ziel ist es, aus der allgemeinen Berechnungsgrundlage der verschobenen und gedrehten Ellipse die [001] (Ko)Varianzen der ungedrehten Ellipse zu ermitteln.

$$Y_{1;2}^{(\varphi)} = \bar{Y} - \frac{C^{(\varphi)}}{V_{YY}^{(\varphi)}} \cdot \left(X - \bar{X}\right) \pm \frac{\sqrt{V_{XX} \cdot V_{YY}}}{n \cdot V_{YY}^{(\varphi)}} \cdot \sqrt{V_{YY}^{(\varphi)} - \left(X - \bar{X}\right)^2}$$

Im übertragenen Sinne, die Elliptische Regression rückgängig machen, wobei in obiger Ellipsenfunktion die Varianz $V_{XX}^{(\varphi)}$ nicht explizit vorkommt.

Einleitung

Gleichzeitig können die Funktionsgleichungen der verschobenen abszissen- und ordinatenparallelen Ellipsen ermittelt werden.

$$Y_{1;2}^{(\varphi=0^\circ)} = \bar{Y} \pm \sqrt{V_{YY}} \cdot \sqrt{\frac{1}{n} - \frac{\left(X - \bar{X}\right)^2}{V_{XX}}} \qquad Y_{1;2}^{(\varphi=90^\circ)} = \bar{Y} \pm \sqrt{V_{XX}} \cdot \sqrt{\frac{1}{n} - \frac{\left(X - \bar{X}\right)^2}{V_{YY}}}$$

Grundlage ist die Singularwertzerlegung.

Die Gleichungen zur Ermittlung der gedrehten (Ko) Varianzen $V_{XX}^{(\varphi)}, V_{YY}^{(\varphi)}$ und $C^{(\varphi)}$ sind bekannt.

$$\begin{split} V_{XX}^{(\varphi)} &= \frac{V_{YY}}{n} \cdot \cos^2 \varphi + \frac{V_{XX}}{n} \cdot \sin^2 \varphi \\ V_{YY}^{(\varphi)} &= \frac{V_{YY}}{n} \cdot \sin^2 \varphi + \frac{V_{XX}}{n} \cdot \cos^2 \varphi \\ C^{(\varphi)} &= \sin \varphi \cdot \cos \varphi \cdot \left(\frac{V_{YY}}{n} - \frac{V_{XX}}{n}\right) \end{split}$$

Unbekannt sind der Drehwinkel φ der Ellipse, sowie die Varianzen V_{XX} und V_{YY} .

ullet Für einen **Einheitskreis** gilt notwendigerweise $V_{XX}=V_{YY}=1$

$$n \cdot V_{XX}^{(\varphi)} = \cos^2 \varphi + \sin^2 \varphi = 1$$
$$n \cdot V_{YY}^{(\varphi)} = \sin^2 \varphi + \cos^2 \varphi = 1$$
$$n \cdot C^{(\varphi)} = 0$$

 \Rightarrow

$$V_{XX}^{(\varphi)} = V_{YY}^{(\varphi)}$$

ullet Für einen **Kreis** gilt mindestens $V_{XX}=V_{YY}=V$

$$n \cdot \frac{V_{XX}^{(\varphi)}}{V} = \cos^2 \varphi + \sin^2 \varphi = 1$$
$$n \cdot \frac{V_{YY}^{(\varphi)}}{V} = \sin^2 \varphi + \cos^2 \varphi = 1$$
$$n \cdot C^{(\varphi)} = 0$$

 \Rightarrow

$$V_{XX}^{(\varphi)} = V_{YY}^{(\varphi)}$$

• Für die Ellipse dann letztendlich:

$$V_{XX}^{(\varphi)} = \frac{V_{YY}}{n} \cdot \cos^2 \varphi + \frac{V_{XX}}{n} \cdot \sin^2 \varphi$$
$$V_{YY}^{(\varphi)} = \frac{V_{YY}}{n} \cdot \sin^2 \varphi + \frac{V_{XX}}{n} \cdot \cos^2 \varphi$$

$$C^{(\varphi)} = \sin \varphi \cdot \cos \varphi \cdot \left(\frac{V_{YY}}{n} - \frac{V_{XX}}{n}\right)$$

Es werden die reduzierten Varianzen eingeführt und umgestellt

$$n \cdot \frac{V_{XX}^{(\varphi)}}{V_{YY}} = \cos^2 \varphi + \frac{V_{XX}}{V_{YY}} \cdot \sin^2 \varphi \qquad \qquad n \cdot \frac{V_{YY}^{(\varphi)}}{V_{YY}} = \sin^2 \varphi + \frac{V_{XX}}{V_{YY}} \cdot \cos^2 \varphi$$

 \Rightarrow

$$n \cdot \frac{V_{XX}^{(\varphi)} \cdot V_{YY} - V_{YY}^{(\varphi)} \cdot V_{XX}}{V_{YY}^2 - V_{XX}^2} = \cos^2 \varphi \qquad \qquad n \cdot \frac{V_{YY}^{(\varphi)} \cdot V_{YY} - V_{XX}^{(\varphi)} \cdot V_{XX}}{V_{YY}^2 - V_{XX}^2} = \sin^2 \varphi$$

 \Rightarrow

$$\frac{V_{XX} \cdot V_{XX}^{(\varphi)} - V_{YY} \cdot V_{YY}^{(\varphi)}}{V_{XX} \cdot V_{YY}^{(\varphi)} - V_{YY} \cdot V_{YY}^{(\varphi)}} = \frac{\sin^2 \varphi}{\cos^2 \varphi} = \tan^2 \varphi$$

Im Anstieg der Ellipse steckt nicht n, die Anzahl der Datenpaare der Urliste, jedoch in der Größe der Ellipse, bzw. in den (Ko)Varianzen.

• Die Summe der gedrehten Kovarianzen ist interessant.

$$V_{XX}^{(\varphi)} = \frac{V_{YY}}{n} \cdot \cos^2 \varphi + \frac{V_{XX}}{n} \cdot \sin^2 \varphi \qquad \qquad V_{YY}^{(\varphi)} = \frac{V_{YY}}{n} \cdot \sin^2 \varphi + \frac{V_{XX}}{n} \cos^2 \varphi$$

 \Rightarrow

$$n = \frac{V_{XX} + V_{YY}}{V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)}}$$

• Die Differenz der gedrehten Kovarianzen ist interessant.

$$V_{XX}^{(\varphi)} = \frac{V_{YY}}{n} \cdot \cos^2 \varphi + \frac{V_{XX}}{n} \cdot \sin^2 \varphi \qquad V_{YY}^{(\varphi)} = \frac{V_{YY}}{n} \cdot \sin^2 \varphi + \frac{V_{XX}}{n} \cdot \cos^2 \varphi$$

_

$$n = \frac{V_{XX} - V_{YY}}{V_{XX}^{(\varphi)} - V_{YY}^{(\varphi)}} \cdot \left(\sin^2 \varphi - \cos^2 \varphi\right)$$

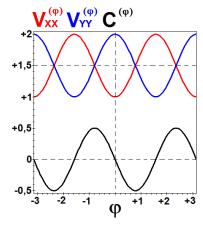
• Differenz und Summe der gedrehten Kovarianzen gleichgesetzt.

$$\frac{V_{XX} + V_{YY}}{V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)}} = \frac{V_{XX} - V_{YY}}{V_{XX}^{(\varphi)} - V_{YY}^{(\varphi)}} \cdot \left(\sin^2 \varphi - \cos^2 \varphi\right)$$

 \Rightarrow

$$\frac{V_{XX} + V_{YY}}{V_{XX} - V_{YY}} \cdot \frac{V_{XX}^{(\varphi)} - V_{YY}^{(\varphi)}}{V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)}} = \sin^2 \varphi - \cos^2 \varphi$$

Die Erkenntnisse grafisch dargestellt mit $V_{XX}=2$ und $V_{YY}=1$.



Darstellung der gedrehten (Ko)Varianzen.

1.2 Herleitung der Singularwertzerlegung

Gegeben sei der Datensatz aus der Elliptischen Regression mittels Bestimmung der Achsen- und Herleitung Ellipsenfunktion nach der Methode der kleinsten Quadrate.

Die Elliptische Regression wurde anhand dieses Beispiels mittels der Methode der Hauptkomponentenanalyse durchgeführt.

i	X_i	Y_i	$X_i - ar{X}$	$Y_i - ar{Y}$	$\left(X_i - \bar{X}\right)^2$	$\left(Y_i - ar{Y} ight)^2$	$(X_i - \bar{X})$ \cdot $(Y_i - \bar{Y})$
1	128	100	-567	-349	321 489	121 801	+197 883
2	256	250	-439	-199	192 721	39 601	+87 361
3	440	510	-255	+61	65 025	3 721	-15 555
4	640	160	-55	-289	3 025	83 521	+15 895
5	768	400	+73	-49	5 329	2 401	-3 577
6	896	520	+201	+71	40 401	5 041	+14 271
7	1152	750	+457	+301	208 849	90 601	+137 557
8	1280	900	+585	+451	342 225	203 401	+263 835
Σ	5560	3590	0	0	1 179 064	550 090	+697 670

Mit:

$$\bar{X} = \frac{5560}{8} = 695$$
 $\bar{Y} = \frac{3590}{8} = 449$

Ergeben sich folgende Varianzen und Kovarianzen:

$$V_{XX} = \frac{1179064}{2-1} \qquad C_{XY} = C_{YX} = \frac{697670}{2-1} \qquad V_{YY} = \frac{550090}{2-1}$$

$$\Rightarrow \qquad V_{XX} = 1179064 \qquad C_{XY} = C_{YX} = 697670 \qquad V_{YY} = 550090$$

$$\Rightarrow \qquad \frac{V_{XX}}{n} = \frac{1179064}{8} = 147383$$

$$\frac{C}{n} = \frac{697670}{8} = 87208,75$$

$$\frac{V_{YY}}{n} = \frac{550090}{8} = 68761,25$$

Im weiteren Verlauf wird auch mit den reduzierten Varianzen oder Kovarianzen gerechnet:

$$\tilde{V}_{XX} = \frac{1179064}{Min(V_{XX}; C; V_{YY})}$$

$$\tilde{C}_{XY} = C_{YX} = \frac{697670}{Min(V_{XX}; C; V_{YY})}$$

$$\tilde{V}_{YY} = \frac{550090}{Min(V_{XX}; C; V_{YY})}$$

$$\tilde{V}_{XX} = \frac{1179064}{550090} \qquad \tilde{C}_{XY} = \tilde{C}_{YX} = \frac{697670}{550090} \qquad \tilde{V}_{YY} = \frac{550090}{550090}$$

$$\Rightarrow \qquad \tilde{V}_{XX} = 2,144 \qquad \tilde{C}_{XY} = \tilde{C}_{YX} = 1,268 \qquad \tilde{V}_{YY} = 1,000$$

$$\Rightarrow \qquad \frac{\tilde{V}_{XX}}{\tilde{V}_{YY}} = 2,144 \qquad \frac{\tilde{V}_{YY}}{\tilde{V}_{XX}} = 0,466$$

Damit ist die Varianzenmatrix definiert:

$$V^{(\varphi)} = \left(\begin{array}{cc} V_{XX}^{(\varphi)} & C^{(\varphi)} \\ C^{(\varphi)} & V_{YY}^{(\varphi)} \end{array} \right)$$

Aus dieser kann die Ellipsenfunktion (gedreht, unverschoben) ermittelt werden.

$$V_{XX}^{(\varphi)} \cdot X^{2} + V_{YY}^{(\varphi)} \cdot Y^{2} + 2 \cdot C^{(\varphi)} \cdot X \cdot Y - \frac{V_{XX}^{(\varphi)} \cdot V_{YY}^{(\varphi)}}{n^{2}} = 0$$

$$\Rightarrow Y_{1;2}^{(\varphi)} = \bar{Y} - \frac{C^{(\varphi)}}{V_{YY}^{(\varphi)}} \cdot \left(X - \bar{X}\right) \pm \frac{\sqrt{V_{XX} \cdot V_{YY}}}{n \cdot V_{YY}^{(\varphi)}} \cdot \sqrt{V_{YY}^{(\varphi)} - \left(X - \bar{X}\right)^{2}}$$

$$\Rightarrow Y_{1;2}^{(\varphi)} = 449 + 0,2885 \cdot (X - 695) \pm 0,8101 \cdot \sqrt{124296,42 - (X - 695)^{2}}$$

Sowie deren Ellipsenachsen.

$$\tilde{Y}_1 = \frac{\bar{Y}}{\bar{X}} \cdot X \qquad \qquad \tilde{Y}_2 = -\frac{\bar{X}}{\bar{Y}} \cdot X + \frac{\bar{X}^2}{\bar{Y}} + \bar{Y}$$

$$\Rightarrow$$

$$\tilde{Y}_1 = \frac{\bar{Y}}{\bar{X}} \cdot X \qquad \qquad \tilde{Y}_2 = \left(\frac{V_{YY} - V_{XX}}{C} - \frac{\bar{Y}}{\bar{X}}\right) \cdot X + \frac{V_{XX} - V_{YY}}{C} \cdot \bar{X} + 2 \cdot \bar{Y}$$

$$\Rightarrow$$

$$\tilde{Y}_1 = +0,646 \cdot X \qquad \qquad \tilde{Y}_2 = -1,548 \cdot X + 1525$$

Die Ermittlung der Berechnungsgrundlagen für die gedrehten (Ko)Varianzen $V_{XX}^{(\varphi)}, V_{YY}^{(\varphi)}$ und $C^{(\varphi)}$ sind aus "Elliptische Regression über die Hauptkomponentenanalyse" zu entnehmen.

Im weiteren Verlauf soll die Varianzenmatrix so manipuliert werden, dass die achsenparallelen Ellipsen ebenfalls ermittelbar sind. Werkzeug soll dafür die Singularwertzerlegung sein.

1.3 Durchführung der Singularwertzerlegung

Gegeben ist die Varianzenmatrix $V^{(\varphi)}$ einer gedrehten aber unverschobenen Ellipse.

Durchführung

$$V^{(\varphi)} = \left(\begin{array}{cc} V_{XX}^{(\varphi)} & C^{(\varphi)} \\ C^{(\varphi)} & V_{YY}^{(\varphi)} \end{array} \right)$$

Zusätzlich ist der allgemeine Aufbau einer Drehmatrix D bekannt.

$$D = \left(\begin{array}{cc} A & +B \\ -B & A \end{array}\right)$$

Die exakten Werte für A und B seinen vorerst unbekannt und sollen im Rahmen der Singularwertzerlegung ermittelt werden.

Die Matrix V soll eine ungedrehte, unverschobene, das bedeutet zwei achsenparallele Ellipsen beschreiben, welche zu $Y_{1;2}^{(\varphi)}$ äquivalent sind. Die Rückdrehung erfolgt dann über:

$$V = D^T \cdot V^{(\varphi)} \cdot D$$

 \Rightarrow

$$V = \begin{pmatrix} +\left(A \cdot V_{XX}^{(\varphi)} - B \cdot C^{(\varphi)}\right) \cdot A & +\left(A \cdot V_{XX}^{(\varphi)} - B \cdot C^{(\varphi)}\right) \cdot B \\ -\left(A \cdot C^{(\varphi)} - B \cdot V_{YY}^{(\varphi)}\right) \cdot B & +\left(A \cdot C^{(\varphi)} - B \cdot V_{YY}^{(\varphi)}\right) \cdot A \\ +\left(B \cdot V_{XX}^{(\varphi)} + A \cdot C^{(\varphi)}\right) \cdot A & +\left(B \cdot V_{XX}^{(\varphi)} + A \cdot C^{(\varphi)}\right) \cdot B \\ -\left(B \cdot C^{(\varphi)} + A \cdot V_{YY}^{(\varphi)}\right) \cdot B & +\left(B \cdot C^{(\varphi)} + A \cdot V_{YY}^{(\varphi)}\right) \cdot A \end{pmatrix}$$

Die Singularwertzerlegung ist dann durchgeführt und damit die Werte für V bekannt, wenn die Matrizenwerte der Nebendiagonalen von V Null sind.

$$\left(B \cdot V_{XX}^{(\varphi)} + A \cdot C^{(\varphi)}\right) \cdot A - \left(B \cdot C^{(\varphi)} + A \cdot V_{YY}^{(\varphi)}\right) \cdot B = 0$$

$$\left(A\cdot V_{XX}^{(\varphi)} - B\cdot C^{(\varphi)}\right)\cdot B + \left(A\cdot C^{(\varphi)} - B\cdot V_{YY}^{(\varphi)}\right)\cdot A = 0$$

 \Rightarrow

$$A^{2} + A \cdot \frac{B \cdot \left(V_{XX}^{(\varphi)} - V_{YY}^{(\varphi)}\right)}{2 \cdot C^{(\varphi)}} - B^{2} = 0$$

 \Rightarrow

$$2 \cdot \frac{C^{(\varphi)}}{B} \cdot A_{1;2} = V_{YY}^{(\varphi)} - V_{XX}^{(\varphi)} \pm \sqrt{\left(V_{YY}^{(\varphi)} - V_{XX}^{(\varphi)}\right)^2 + 4 \cdot C^{(\varphi)2}}$$

Die Berechnungsgrundlage der Eigenwerte der gekippten Ellipse ist bekannt.

$$2 \cdot \lambda_{1;2}^{(\varphi)} = V_{YY}^{(\varphi)} + V_{XX}^{(\varphi)} \pm \sqrt{\left(V_{YY}^{(\varphi)} - V_{XX}^{(\varphi)}\right)^2 + 4 \cdot C^{(\varphi)2}}$$

Damit kann der Wurzelwert substituiert werden.

$$2 \cdot \frac{C^{(\varphi)}}{B} \cdot A_{1;2} + V_{XX}^{(\varphi)} = 2 \cdot \lambda_{1;2}^{(\varphi)} - V_{XX}^{(\varphi)}$$

 \Rightarrow

$$A_{1;2} = \frac{\lambda_{1;2}^{(\varphi)} - V_{XX}^{(\varphi)}}{C^{(\varphi)}} \cdot B$$

Die triviale Lösung dieses Ausdrucks hilft, obige Bedingung der Nebendiagonale für V zu erfüllen.

$$B = C^{(\varphi)}$$

 \Rightarrow

$$A = \lambda^{(\varphi)} - V_{XX}^{(\varphi)}$$

$$\Rightarrow \qquad D = \begin{pmatrix} \lambda^{(\varphi)} - V_{XX}^{(\varphi)} & + C^{(\varphi)} \\ -C^{(\varphi)} & \lambda^{(\varphi)} - V_{XX}^{(\varphi)} \end{pmatrix}$$

$$\Rightarrow \qquad V = \begin{pmatrix} +\left(\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot V_{XX}^{(\varphi)} - C^{(\varphi)2}\right) \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \\ -\left(\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot C^{(\varphi)} - C^{(\varphi)} \cdot V_{YY}^{(\varphi)}\right) \cdot C^{(\varphi)} \\ +\left(C^{(\varphi)} \cdot V_{XX}^{(\varphi)} + \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot C^{(\varphi)}\right) \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \\ -\left(C^{(\varphi)2} + \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot V_{YY}^{(\varphi)}\right) \cdot C^{(\varphi)} \\ +\left(\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot V_{XX}^{(\varphi)} - C^{(\varphi)2}\right) \cdot C^{(\varphi)} \\ +\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot C^{(\varphi)} - C^{(\varphi)} \cdot V_{YY}^{(\varphi)}\right) \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \\ +\left(C^{(\varphi)} \cdot V_{XX}^{(\varphi)} + \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot C^{(\varphi)}\right) \cdot C^{(\varphi)} \\ +\left(C^{(\varphi)2} + \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot V_{YY}^{(\varphi)}\right) \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \end{pmatrix}$$

Die Nebendiagonale ist tatsächlich dann Null, wenn

$$\begin{split} \left(C^{(\varphi)} \cdot V_{XX}^{(\varphi)} + \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot C^{(\varphi)}\right) \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) - \left(C^{(\varphi)2} + \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot V_{YY}^{(\varphi)}\right) \cdot C^{(\varphi)} &= 0 \\ \left(\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot V_{XX}^{(\varphi)} - C^{(\varphi)2}\right) \cdot C^{(\varphi)} + \left(\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) \cdot C^{(\varphi)} - C^{(\varphi)} \cdot V_{YY}^{(\varphi)}\right) \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right) &= 0 \\ \Rightarrow \\ \lambda^{(\varphi)2} - \lambda^{(\varphi)} \cdot \left(V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)}\right) + V_{XX}^{(\varphi)} \cdot V_{YY}^{(\varphi)} - C^{(\varphi)2} &= 0 \\ \Rightarrow \\ 2 \cdot \lambda_{1;2}^{(\varphi)} &= V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)} \pm \sqrt{\left(V_{XX}^{(\varphi)} - V_{YY}^{(\varphi)}\right)^2 + 4 \cdot C^{(\varphi)2}} \end{split}$$

der Wert von $\lambda^{(\varphi)}$ einen Eigenwert der Matrix $V^{(\varphi)}$ annimmt.

Damit sind die Elemente Z_{11} und Z_{22} der Hauptdiagonale bestimmt.

$$\begin{split} Z_{11} &= \left(\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right) \cdot V_{XX}^{(\varphi)} - C^{(\varphi)2} \right) \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right) - \left(\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right) \cdot C^{(\varphi)} - C^{(\varphi)} \cdot V_{YY}^{(\varphi)} \right) \cdot C^{(\varphi)} \\ Z_{22} &= \left(C^{(\varphi)} \cdot V_{XX}^{(\varphi)} + \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right) \cdot C^{(\varphi)} \right) \cdot C^{(\varphi)} + \left(C^{(\varphi)2} + \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right) \cdot V_{YY}^{(\varphi)} \right) \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right) \\ \Rightarrow \\ Z_{11} &= \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right)^2 \cdot V_{XX}^{(\varphi)} - 2 \cdot C^{(\varphi)2} \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right) + C^{(\varphi)2} \cdot V_{YY}^{(\varphi)} \\ Z_{22} &= \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right)^2 \cdot V_{YY}^{(\varphi)} + 2 \cdot C^{(\varphi)2} \cdot \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right) + C^{(\varphi)2} \cdot V_{XX}^{(\varphi)} \\ \Rightarrow \\ Z_{11} + Z_{22} &= \left(\left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right)^2 + C^{(\varphi)2} \right) \cdot \left(V_{YY}^{(\varphi)} + V_{XX}^{(\varphi)} \right) \\ \Rightarrow \\ S &= \frac{Z_{11} + Z_{22}}{V_{YY}^{(\varphi)} + V_{XX}^{(\varphi)}} = \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)} \right)^2 + C^{(\varphi)2} \\ \Rightarrow \\ S_{1} &= \left(\lambda_{1}^{(\varphi)} - V_{XX}^{(\varphi)} \right)^2 + C^{(\varphi)2} \\ S_{2} &= \left(\lambda_{2}^{(\varphi)} - V_{XX}^{(\varphi)} \right)^2 + C^{(\varphi)2} \end{split}$$

Damit sind zwei Singularwerte S bekannt. Die (Rück)Drehung der Ellipse ist beendet. Es existieren nun die Berechnungsgrundlagen für zwei achsenparallele Ellipsen.

Die Umkehrung der Berechnung von S ergibt für die Matrix V.

$$\lambda_1^{(\varphi)} + \lambda_2^{(\varphi)} = V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)} = \frac{Z_{11}}{S} + \frac{Z_{22}}{S}$$

$$\Rightarrow \qquad \lambda_1 + \lambda_2 = V_{XX} + V_{YY} = \frac{Z_{11}}{S} + \frac{Z_{22}}{S}$$

$$\Rightarrow \qquad \left(\begin{array}{c} V_{XX} & 0\\ 0 & V_{YY} \end{array}\right) = \frac{1}{S} \cdot \left(\begin{array}{c} Z_{11} & 0\\ 0 & Z_{22} \end{array}\right)$$

$$\Rightarrow \qquad V_{XX} = \frac{Z_{11}}{S} \qquad V_{YY} = \frac{Z_{22}}{S}$$

Die Kovarianz C zeigt, dass dies auch der Fall ist, verantwortlich für die Drehung einer Ellipse. C ist bei einer achsenparallelen Ellipse gleich Null. Daher auch die Forderung, dass die Nebendiagonale von V Null sein muss. Eine Berechnungsgrundlage aus anderen Methoden zeigt dies deutlich mit dem Drehwinkel φ der Ellipse.

$$C^{(\varphi)} = \sin \varphi \cdot \cos \varphi \cdot (e^2 - f^2)$$

 \Rightarrow

$$C^{(\varphi=0^\circ)} = 0 \qquad C^{(\varphi=90^\circ)} = 0$$

Das gilt natürlich auch für die Matrix V.

$$V_{C=0} = \frac{1}{S} \cdot \begin{pmatrix} \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right)^{2} \cdot V_{XX}^{(\varphi)} & 0 \\ 0 & \left(\lambda^{(\varphi)} - V_{XX}^{(\varphi)}\right)^{2} \cdot V_{YY}^{(\varphi)} \end{pmatrix} = \begin{pmatrix} V_{XX} & 0 \\ 0 & V_{YY} \end{pmatrix}$$

Somit ist die Singulärwertzerlegung beendet.

$$\frac{V_{XX}}{n} = \frac{\left(\lambda - V_{XX}^{(\varphi)}\right)^2 \cdot V_{XX}^{(\varphi)} - 2 \cdot C^{(\varphi)2} \cdot \left(\lambda - V_{XX}^{(\varphi)}\right) + C^{(\varphi)2} \cdot V_{YY}^{(\varphi)}}{\left(\lambda - V_{XX}^{(\varphi)}\right)^2 + C^{(\varphi)2}}$$

$$\frac{V_{YY}}{n} = \frac{\left(\lambda - V_{XX}^{(\varphi)}\right)^2 \cdot V_{YY}^{(\varphi)} + 2 \cdot C^{(\varphi)2} \cdot \left(\lambda - V_{XX}^{(\varphi)}\right) + C^{(\varphi)2} \cdot V_{XX}^{(\varphi)}}{\left(\lambda - V_{XX}^{(\varphi)}\right)^2 + C^{(\varphi)2}}$$

Und:

$$C = 0$$

Für obiges Beispiel sind folgende ungedrehte (Ko)Varianzen V_{XX} und V_{YY} ermittelt.

Grundlage sind folgende gedrehte (Ko)Varianzen.

$$V_{XX}^{(\varphi)} = 91876,04$$
 $C^{(\varphi)} = -35851,52$ $V_{YY}^{(\varphi)} = 124268,21$

•
$$\lambda_1^{(\varphi)} = 147412, 24$$

$$S_1 = 4369601006$$

$$\Rightarrow V_{XX}^{\left(\lambda_{1}^{(\varphi)}\right)}=n\cdot 68732=549856 \qquad V_{YY}^{\left(\lambda_{1}^{(\varphi)}\right)}=n\cdot 147412,24=1179298$$

$$\Rightarrow \frac{V_{XX}^{\left(\lambda_{1}^{(\varphi)}\right)}}{V_{X}^{\left(\lambda_{1}^{(\varphi)}\right)}}=\frac{68732}{147412,24}=0,466$$

Die Ellipsenfunktion ist berechenbar.

$$Y_{1;2}^{(\varphi)} = \bar{Y} - \frac{C^{(\varphi)}}{V_{YY}^{(\varphi)}} \cdot (X - \bar{X}) \pm \frac{\sqrt{V_{XX} \cdot V_{YY}}}{n \cdot V_{YY}^{(\varphi)}} \cdot \sqrt{V_{YY}^{(\varphi)} - (X - \bar{X})^2}$$
$$Y_{1;2}^{(\varphi)} = \bar{Y} \pm \frac{\sqrt{V_{XX} \cdot V_{YY}}}{n \cdot V_{YY}^{(\varphi)}} \cdot \sqrt{V_{YY}^{(\varphi)} - (X - \bar{X})^2}$$

Mit:

 \Rightarrow

 \Rightarrow

$$\rho_{XY} = \frac{87243,76}{\sqrt{10134383851,4}} = 0,867$$

$$V_{YY}^{(\varphi=0^\circ)} = f^2 = \frac{V_{XX}}{n}$$

$$V_{YY}^{(\varphi=90^\circ)} = e^2 = \frac{V_{YY}}{n}$$

 \rightarrow

$$Y_{1;2}^{(\varphi=0^{\circ})} = \bar{Y} \pm \sqrt{V_{YY}} \cdot \sqrt{\frac{1}{n} - \frac{\left(X - \bar{X}\right)^{2}}{V_{XX}}} = 449 \pm 0,6828 \cdot \sqrt{147412 - \left(X - 695\right)^{2}}$$

$$Y_{1;2}^{(\varphi=90^{\circ})} = \bar{Y} \pm \sqrt{V_{XX}} \cdot \sqrt{\frac{1}{n} - \frac{\left(X - \bar{X}\right)^{2}}{V_{YY}}} = 449 \pm 1,4645 \cdot \sqrt{68732 - \left(X - 695\right)^{2}}$$

Der Anstieg der Hauptachse der gedrehten Ellipse:

$$\sqrt{\frac{V_{YY}^{(\varphi)} \cdot V_{YY} - V_{XX}^{(\varphi)} \cdot V_{XX}}{V_{YY}^{(\varphi)} \cdot V_{YY} - V_{YY}^{(\varphi)} \cdot V_{XX}}}} = \sqrt{\frac{549856 \cdot 124268 - 91876 \cdot 1179298}{549856 \cdot 91876 - 124268 \cdot 1179298}} = \tan \varphi = 0,646 \equiv 32,8^{\circ}$$

Der abschließende Test.

$$\frac{V_{XX}/n + V_{YY}/n}{V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)}} \stackrel{?}{=} \frac{147412 + 68732}{91876 + 124268}$$

 \Rightarrow

$$1 \stackrel{!}{=} 1$$

2 Zusammenfassung der Singularwertzerlegung I

Es sind bekannt die (Ko)Varianzen der gedrehten Ellipse $(V_{XX}^{(\varphi)}, V_{YY}^{(\varphi)} \text{ und } C^{(\varphi)})$. Dann können die Zusammenf. I Varianzen der ungedrehten Ellipse berechnet werden aus:

$$\frac{V_{XX}}{n} = \frac{\left(\lambda - V_{XX}^{(\varphi)}\right)^2 \cdot V_{XX}^{(\varphi)} - 2 \cdot C^{(\varphi)2} \cdot \left(\lambda - V_{XX}^{(\varphi)}\right) + C^{(\varphi)2} \cdot V_{YY}^{(\varphi)}}{\left(\lambda - V_{XX}\right)^2 + C^{(\varphi)2}}$$

$$\frac{V_{YY}}{n} = \frac{\left(\lambda - V_{XX}^{(\varphi)}\right)^2 \cdot V_{YY}^{(\varphi)} + 2 \cdot C^{(\varphi)2} \cdot \left(\lambda - V_{XX}^{(\varphi)}\right) + C^{(\varphi)2} \cdot V_{XX}^{(\varphi)}}{\left(\lambda - V_{XX}^{(\varphi)}\right)^2 + C^{(\varphi)2}}$$

Wobei λ die Eigenwerte darstellen.

 \Rightarrow

$$2 \cdot \lambda_{1;2}^{(\varphi)} = V_{YY}^{(\varphi)} + V_{XX}^{(\varphi)} \pm \sqrt{\left(V_{YY}^{(\varphi)} - V_{XX}^{(\varphi)}\right)^2 + 4 \cdot C^{(\varphi)2}}$$

Damit ergeben sich vier Varianzen, jeweils zwei für die abszissenparallele und zwei für die ordinatenparallele Ellipse.

$$\frac{V_{XX}^{(\lambda_1)}}{n} \qquad \qquad \frac{V_{YY}^{(\lambda_1)}}{n} \qquad \qquad \frac{V_{XX}^{(\lambda_2)}}{n} \qquad \qquad \frac{V_{YY}^{(\lambda_2)}}{n}$$

Die Berechnungsgrundlage der originalen, gedrehten, verschobenen Ellipse.

$$V_{XX}^{(\varphi)} \cdot X^{2} + V_{YY}^{(\varphi)} \cdot Y^{2} + 2 \cdot C^{(\varphi)} \cdot X \cdot Y - \frac{V_{XX}^{(\varphi)} \cdot V_{YY}^{(\varphi)}}{n^{2}} = 0$$

$$Y_{1;2}^{(\varphi)} = \bar{Y} - \frac{C^{(\varphi)}}{V_{YY}^{(\varphi)}} \cdot \left(X - \bar{X}\right) \pm \frac{\sqrt{V_{XX} \cdot V_{YY}}}{n \cdot V_{YY}^{(\varphi)}} \cdot \sqrt{V_{YY}^{(\varphi)} - \left(X - \bar{X}\right)^{2}}$$

 $Y_{1:2}^{(\varphi)} = \bar{X} + \alpha \cdot (X - \bar{X}) \pm \beta \cdot \sqrt{\gamma - (X - \bar{X})^2}$

Die Berechnungsgrundlagen der verschobenen, abszissen- bzw. ordinatenparallelen Ellipsen.

$$Y_{1;2}^{(\varphi=0^{\circ})} = \bar{Y} \pm \sqrt{V_{YY}} \cdot \sqrt{\frac{1}{n} - \frac{(X - \bar{X})^{2}}{V_{XX}}}$$

$$Y_{1;2}^{(\varphi=90^{\circ})} = \bar{Y} \pm \sqrt{V_{XX}} \cdot \sqrt{\frac{1}{n} - \frac{(X - \bar{X})^{2}}{V_{YY}}}$$

$$Y_{1;2}^{(\varphi=0^{\circ})} = \bar{Y} \pm \sqrt{\frac{V_{YY}}{n}} \cdot \sqrt{1 - \frac{n}{V_{XX}} \cdot (X - \bar{X})^{2}}$$

$$Y_{1;2}^{(\varphi=90^{\circ})} = \bar{Y} \pm \sqrt{\frac{V_{XX}}{n}} \cdot \sqrt{1 - \frac{n}{V_{YY}} \cdot (X - \bar{X})^{2}}$$

Eine Kontrollmöglichkeit ergibt über die inverse Bestimmung von n.

$$n = \frac{V_{XX} + V_{YY}}{V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)}}$$

$$\Rightarrow 1 = \frac{V_{XX}/n + V_{YY}/n}{V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)}}$$

$$\Rightarrow V_{XX}^{(\varphi)} + V_{YY}^{(\varphi)} = \frac{V_{XX}}{n} + \frac{V_{YY}}{n}$$

2	Zusammenfassung der Singularwertzerlegung I

3 Erweiterungen vorhandener Berechnungsgrundlagen

Berechnung fehlender Werte.

Eine Möglichkeit ist, die fehlenden Werte aus der bekannten Ellipsengleichung zu extrahieren.

Erweiterungen

ullet Ermittlung des Wertes von $V_{XX}^{(arphi)}$

Gegeben ist die Ellipsenfunktionsgleichung, umgestellt in die "Normalform".

$$Y_{1;2}^{(\varphi)} = 449 + 0,2885 \cdot (X - 695) \pm 0,8101 \cdot \sqrt{124296,42 - (X - 695)^2}$$

 \Rightarrow

$$Y_{1;2}^{(\varphi)} = \bar{Y} + \alpha \cdot (X - \bar{X}) \pm \beta \cdot \sqrt{\gamma - (X - \bar{X})^2}$$

Damit gegeben:

$$\alpha = 0.2885$$
 $\beta = 0.8101$ $\gamma = 124296.42$

Die allgemeine Ellipsengleichung zeigt folgenden Aufbau:

$$Y_{1;2}^{(\varphi)} = \bar{Y} - \frac{C^{(\varphi)}}{V_{YY}^{(\varphi)}} \cdot (X - \bar{X}) \pm \frac{\sqrt{V_{XX} \cdot V_{YY}}}{n \cdot V_{YY}^{(\varphi)}} \cdot \sqrt{V_{YY}^{(\varphi)} - (X - \bar{X})^2}$$

Damit sind $V_{YY}^{(\varphi)}$ und $C^{(\varphi)}$ ablesbar.

$$V_{YY}^{(\varphi)} = \gamma = 124296, 42$$

$$\frac{C^{(\varphi)}}{V_{YY}^{(\varphi)}} = \alpha = +0.2885$$

 \Rightarrow

$$C^{(\varphi)} = -\alpha \cdot V_{YY}^{(\varphi)} = -0.2885 \cdot 124296, 42 = -35859,52$$

Ein Term ist definiert:

$$\frac{\sqrt{V_{XX} \cdot V_{YY}}}{n \cdot V_{YY}^{(\varphi)}} = \beta = 0,8101$$

 \Rightarrow

$$\frac{V_{XX} \cdot V_{YY}}{n^2} = \beta^2 \cdot V_{YY}^{(\varphi)2} = 0,8101^2 \cdot 124268,21^2 = 10134383851,4$$

Mit der in "Elliptische Regression von Datenpunkten über die Hauptkomponentenanalyse" entwickelten Vorschrift

$$V_{XX} \cdot V_{YY} = n^2 \cdot \left(V_{XX}^{(\varphi)} \cdot V_{YY}^{(\varphi)} - C^{(\varphi)2} \right)$$

kann weiterentwickelt werden.

$$V_{XX}^{(\varphi)} \cdot V_{YY}^{(\varphi)} - C^{(\varphi)2} = \beta^2 \cdot V_{YY}^{(\varphi)2}$$

 \Rightarrow

$$V_{XX}^{(\varphi)} = \frac{\beta^2 \cdot V_{YY}^{(\varphi)2} + C^{(\varphi)2}}{V_{YY}^{(\varphi)}} = \beta^2 \cdot V_{YY}^{(\varphi)} + \frac{C^{(\varphi)2}}{V_{YY}^{(\varphi)}} = \beta^2 \cdot V_{YY}^{(\varphi)} - \alpha \cdot C^{(\varphi)}$$

 \Rightarrow

$$V_{XX}^{(\varphi)} = 0,8101^2 \cdot 124268,21 + 0,2885 \cdot 35851,52 = 81552,51 + 10343,2 = 91895,71 + 10343,2 = 91805,71 + 10345,71 + 10345,71 + 10345,71 + 10345,71 + 10345,71 + 10345,71 + 10345,71 + 10345,71 + 10345,71 + 10345,71 + 10345,71 + 10345,$$

\bullet Ermittlung des Wertes von C

Die Kovarianz C der ungedrehten Ellipse ist aus den Anstiegen der Achsen der abszissen- und ordinatenparallelen Ellipsen berechenbar.

$$\tilde{Y}_1 = \frac{\bar{Y}}{\bar{X}} \cdot X$$

$$\tilde{Y}_2 = \left(\frac{V_{YY} - V_{XX}}{C} - \frac{\bar{Y}}{\bar{X}}\right) \cdot X + \frac{V_{XX} - V_{YY}}{C} \cdot \bar{X} + 2 \cdot \bar{Y}$$

$$-\frac{\bar{X}}{\bar{Y}} = \frac{V_{YY} - V_{XX}}{C} - \frac{\bar{Y}}{\bar{X}}$$

$$\frac{\bar{X}^{2} - \bar{Y}^{2}}{\bar{X} \cdot \bar{Y}} \cdot \frac{C}{V_{XX} - V_{YY}} = \frac{n}{n}$$

$$\Rightarrow \frac{C}{n} = \frac{\bar{X} \cdot \bar{Y}}{\bar{X}^{2} - \bar{Y}^{2}} \cdot \left(\frac{V_{XX}}{n} - \frac{V_{YY}}{n}\right)$$

$$\Rightarrow \frac{C}{n} = \frac{695 \cdot 449}{695^{2} - 449^{2}} \cdot (147412 - 68732) = 87243,76$$

• Ermittlung des Wertes von ρ_{XY}

Der Korrelationskoeffizient ρ_{XY} lässt sich über die eigene allgemeine Berechnungsgrundlage ermitteln.

$$\rho_{XY} = \frac{C}{\sqrt{V_{XX} \cdot V_{YY}}}$$

$$\Rightarrow \qquad \qquad \rho_{XY} = \frac{C/n}{\sqrt{V_{XX}/n \cdot V_{YY}/n}}$$

$$\Rightarrow \qquad \qquad \rho_{XY} = \frac{87243,76}{\sqrt{10134383851,4}} = 0,867$$

Eine weitere Möglichkeit ist die Berechnung über den Anstieg der Hauptachse nach der "Methode der kleinsten Quadrate" a_{MKQ} .

$$\rho_{XY} = a_{MKQ} \cdot \sqrt{\frac{V_{XX}}{n} \cdot \frac{n}{V_{YY}}} = a_{MKQ} \cdot \sqrt{\frac{V_{XX}}{V_{YY}}} = 0,5928 \cdot \sqrt{\frac{147412}{68732}} = 0,868$$

ullet Ermittlung des Wertes von n

Es gibt keine Möglichkeit n zu rekonstruieren. Jedoch ist das für die weitere Verwendung kein Problem, da in den Berechnungsgrundlagen der Ellipsenfunktionsgleichung, der Achsenfunktionen und der abszissen- und ordinatenparallelen Ellipsen immer V/n gefordert wird.

4 Zusammenfassung der Singularwertzerlegung II

Ermittlung von $V_{XX}^{(\varphi)}$ und n. Beide sind nicht ablesbar aus den Funktionsgleichungen der Ellipse. Zusammenf. II Die Ermittlung der ungedrehten (Ko)Varianzen aus der Normalform der Ellipsenfunktionsgleichung.

$$Y_{1;2}^{(\varphi)} = \bar{Y} + \alpha \cdot (X - \bar{X}) \pm \beta \cdot \sqrt{\gamma - (X - \bar{X})^2}$$

 $C^{(\varphi)}$ ist berechenbar.

$$C^{(\varphi)} = -\alpha \cdot \gamma$$

 $V_{XX}^{(\varphi)}$ kann entwickelt werden.

$$V_{XX}^{(\varphi)} = \beta^2 \cdot V_{YY}^{(\varphi)} - \alpha \cdot C^{(\varphi)} = (\alpha^2 + \beta^2) \cdot V_{YY}^{(\varphi)}$$

 \Rightarrow

$$V_{XX}^{(\varphi)} = (\alpha^2 + \beta^2) \cdot \gamma$$

Die Kovarianz ${\cal C}$ der ungedrehten Ellipse ist aus den Anstiegen der Achsen der abszissen- und ordinatenparallelen Ellipsen berechenbar.

$$\frac{C}{n} = \frac{\bar{X} \cdot \bar{Y}}{\bar{X}^2 - \bar{Y}^2} \cdot \left(\frac{V_{XX}}{n} - \frac{V_{YY}}{n}\right)$$

Der Korrelationskoeffizient ρ_{XY} lässt sich über die eigene allgemeine Berechnungsgrundlage ermitteln.

$$\rho_{XY} = \frac{C/n}{\sqrt{V_{XX}/n \cdot V_{YY}/n}}$$

Eine weitere Möglichkeit ist die Berechnung über den Anstieg der Hauptachse nach der "Methode der kleinsten Quadrate" a_{MKQ} .

$$\rho_{XY} = a_{MKQ} \cdot \sqrt{\frac{V_{XX}}{n} \cdot \frac{n}{V_{YY}}}$$

4	Zusammenfassung der Singularwertzerlegung II

5 Zusammenfassung des Beispiels

Beispiel

i	X_i	Y_i	$X_i - \bar{X}$	$Y_i - ar{Y}$	$\left(X_i - \bar{X}\right)^2$	$\left(Y_i - ar{Y} ight)^2$	$(X_i - \bar{X})$ \cdot $(Y_i - \bar{Y})$
1	128	100	-567	-349	321 489	121 801	+197 883
2	256	250	-439	-199	192 721	39 601	+87 361
3	440	510	-255	+61	65 025	3 721	-15 555
4	640	160	-55	-289	3 025	83 521	+15 895
5	768	400	+73	-49	5 329	2 401	-3 577
6	896	520	+201	+71	40 401	5 041	+14 271
7	1152	750	+457	+301	208 849	90 601	+137 557
8	1280	900	+585	+451	342 225	203 401	+263 835
Σ	5560	3590	0	0	1 179 064	550 090	+697 670

$$\bar{X} = \frac{5560}{8} = 695 \qquad \bar{Y} = \frac{3590}{8} = 449$$

$$\Rightarrow \qquad V_{XX} = 1179064 \qquad C_{XY} = C_{YX} = 697670 \qquad V_{YY} = 550090$$

$$\Rightarrow \qquad \frac{V_{XX}}{n} = 147383 \qquad \frac{C}{n} = 87208,75 \qquad \frac{V_{YY}}{n} = 68761,25$$

$$\Rightarrow \qquad \frac{V_{XX}}{V_{YY}} = 2,144 \qquad \frac{V_{YY}}{V_{XX}} = 0,466$$

Der Anstieg der Hauptachse.

$$\varphi = \arctan \frac{449}{695} = 0,574 \equiv 32,86^{\circ}$$

Die Ellipsenachsen.

$$\tilde{Y}_1 = +0,646 \cdot X$$
 $\tilde{Y}_2 = -1,548 \cdot X + 1525$

Die gedrehten (Ko)Varianzen.

$$V_{XX}^{(\varphi)} = 91876,04$$
 $C^{(\varphi)} = -35851,52$ $V_{YY}^{(\varphi)} = 124268,21$

Die rekonstruierten, ungedrehten (Ko)Varianzen.

$$\bullet \ \lambda_{1}^{(\varphi)} = 147412,24$$

$$Z_{11} = 300 \cdot 10^{12} \qquad Z_{22} = 644,1 \cdot 10^{12}$$

$$\Rightarrow \qquad S_{1} = 4369601006$$

$$\Rightarrow \qquad V_{XX} = n \cdot 68732 = 549856 \qquad V_{YY} = n \cdot 147412,24 = 1179298$$

$$\Rightarrow \qquad \frac{V_{XX}}{V_{YY}} = 0,466$$

$$\begin{array}{c} \bullet \ \lambda_{2}^{(\varphi)} = 68732 \\ & Z_{11} = 268, 4 \cdot 10^{12} \qquad Z_{22} = 125, 2 \cdot 10^{12} \\ \Rightarrow & \\ & S_{2} = 1820977613 \\ \Rightarrow & \\ & V_{XX} = n \cdot 147412, 24 = 1179298 \qquad V_{YY} = n \cdot 68732 = 549856 \\ \Rightarrow & \\ & \frac{V_{XX}}{V_{YY}} = 2, 144 \end{array}$$

Die Ellipsenfunktionen sind definiert.

$$Y_{1;2}^{(\varphi=0^{\circ})} = 449 \pm 0,6828 \cdot \sqrt{147412 - (X - 695)^2}$$
$$Y_{1;2}^{(\varphi=90^{\circ})} = 449 \pm 1,4645 \cdot \sqrt{68732 - (X - 695)^2}$$

Sowie:

$$Y_{1;2}^{(\varphi)} = 449 + 0,2885 \cdot (X - 695) \pm 0,8101 \cdot \sqrt{124296,42 - (X - 695)^2}$$

$$Y_{1;2}^{(\varphi)} = \bar{Y} + \alpha \cdot (X - \bar{X}) \pm \beta \cdot \sqrt{\gamma - (X - \bar{X})^2}$$

$$\alpha = 0,2885$$

$$\beta = 0.8101$$

$$\beta = 0.8101$$
 $\gamma = 124296.42$

$$V_{VV}^{(\varphi)} = 124296, 42$$

 \Rightarrow

$$C^{(\varphi)} = -35859,52$$

$$V_{XX}^{(\varphi)} = 91895,71$$

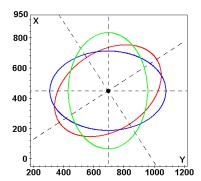
Die Kovarianz C.

$$\frac{C}{n} = 87243,76$$

Der Korrelationskoeffizient ρ_{XY} .

$$\rho_{XY} = 0.867$$

Die Ergebnisse grafisch dargestellt.



Schwarz Die Ellipsenachsen mit Mittelpunkt, Rot regressierte verschobene, gedrehte Ellipse, Blau abszissenparallele Ellipse, Grün ordinatenparallele Ellipse