

Untersuchung hypothetischer Proton-Elektron-Komplexe der Ionosphäre

Investigation of

hypothetical proton-electron complexes of the ionosphere

Dipl.-Ing. Björnstjerne Zindler, M.Sc.

www.Zenithpoint.de

Erstellt: 06. Mai 1996 - Letzte Revision: 23. Juli 2025

Inhaltsverzeichnis

1	Prol		3
	1.1	Inhalt	3
	1.2	Referat	4
	1.3	Thesen	5
2	Verv	vendete Formelzeichen und Abkürzungen	7
3	Allge	emeiner Teil	9
	3.1	Die Erde als Daten und Fakten	9
	3.2	Die Erde als Figur	(
	3.3	Die Poldefinitionen der Erde	2
	3.4	Der Erdmagnetismus	4
	3.5	Die Variationen des erdmagnetischen Feldes	6
	3.6	Die Magneto-, Exo- und Ionosphäre	8
4	Der	Protonen-Elektronen-Komplex - PROTEL 2	21
	4.1	Grundlegendes	21
	4.2	Vorausgesagte Eigenschaften	21
	4.3	Berechnungsgrundlagen I - Das PROTEL im Allgemeinen	22
	4.4	Berechnungsgrundlagen II - Das PROTEL als hochohmige Struktur	26
	4.5	Berechnungsgrundlagen III - Das PROTEL als Oszillator	5 1
5	Anh	ang 3	,5
	5.1	Zusammenfassung der gewonnenen Berechnungsgrundlagen	5
	5.2	Literaturnachweis	
	5.3	Impressum	9

Literatur

[001] Keine für vorliegenden Text.

[002] Im Anhang dediziert angegeben.

1 Prolog

1.1 Inhalt [002]

PROTEL - Untersuchung der Eigenschaften von Proton-Elektron-Komplexen.

- Untersuchung und Herleitung der mathematisch-physikalischen Eigenschaften von PROTELs.
- Erarbeitung von Vorrichtungen zum Nachweis und Eigenschaftsfindung von PROTELs.

Berlin, den 06. Mai 1996

1.2 Referat

Die hier vorliegende Bearbeitung befaßt sich mit den physikalischen, sowie mathematischen Eigenschaften von PROTELs.

Das Vorhandensein solcher Proton-Elektron-Komplexe in der Ionosphäre wird postuliert und auf vorerst theoretischem Wege in ihren Eigenschaften untersucht.

Aus Gründen der Übersichtlichkeit wird die Arbeit in folgende Teile gegliedert:

- Kleine Übersicht über die Erde als geophysikalisches Faktum.
- ullet Eigenschaften von PROTELs im Frequenzbereich 20 < f < 20.000Hz.
- Experimentalvorrichtungen.¹
- Durchführung und Auswertung.²

Die Abschnitte "Eigenschaften von PROTELs" bis "Durchführung und Auswertung" werden von einem numerischen Programm unterstützt, da die mathematischen Grundlagen in recht umfangreichen Berechnungsvorschriften vorliegen.

¹gesondertes Arbeitsblatt

²gesondertes Arbeitsblatt

1.3 Thesen

Die hier vorliegende Arbeit ist die Untersuchung hypothetisch angenommener PROTELs.

- Es ist bekannt, dass freie Ladungsträger von einem Magnetfeld abgelenkt werden. Das es dann unter günstigen Umständen zu einer vollständigen Kreisbahn um die Magnetfeldlinie mit seitlichem Drall (Gyrobahnen) kommen kann, wurde auch hinreichend beschrieben.
- Es wird angenommen, dass Elektronen und Protonen Gyrobahnen entlang von Magnetfeldlinien beschreiben und so koaxiale Strukturen erzeugen. Über die Struktureigenschaften, der Weiterleitung von elektromagnetischen Wellen innerhalb von koaxialen Leitern gibt es genügend Literatur.
- Koaxiale Strukturen werden normalerweise bei höheren Frequenzen betrachtet. PROTELs besitzen jedoch sehr große Ausmaße. Deshalb verschieben sich die Eigenschaften in den ELF-Frequenzbereich.
- Die in dieser Arbeit vorkommenden Berechnungsgrundlagen sind aus den zuständigen Werken entnommen und wurden dann nach mathematischen Regeln in entsprechend benötigte Gleichungen umgeformt. Dabei wurde auf die Auflistung sämtlicher Zwischenschritte (zum Teil) verzichtet.

2 Verwendete Formelzeichen und Abkürzungen

		8
	A C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 / 3
v_0	Anfangsgeschwindigkeit eines Materieteilchen	[m/s]
m_0	Ruhemasse eines Materieteilchen	[kg]
E_v	Gesamtenerge eines Materieteilchen	[eV]
v_r	Endgeschwindigkeit eines Materieteilchen	[m/s]
$\dot{F_l}$	Lorentzkraft	[N]
ı į	Lorentzmart	[11]
	D 1: 11 11 '	r / 21
a_r	Radialbeschleunigung	$[m/s^2]$
r	Radialradius	[m]
M	Trägheitsmoment	$[kg \cdot m^2]$
E_{kin}	Rotationsenergie	$[N \cdot m ; J]$
E_{pot}	Lageenergie	$[N \cdot m; J]$
Δpoi	Lugochergie	[1, 111, 0]
l	äquivalente Materiewellenfrequenz	[Hz; 1/s]
f_g	Gyrofrequenz	[Hz; 1/s]
f_k	koxiale Grenzfrequenz	[Hz; 1/s]
v	Verhältnis Proton- Elektron- Radius	[-]
Z	frequenzunabhängige Impedanz	[W]
$U_{a;q}$	äquivalente Elektronen- bzw Protonespannung	[V]
$I_{a;q}$	äquivalenter Elektronen- bzw Protonenstrom	[A]
$R_{a;q}$	äquivalenter Widerstand	[W]
$r_{a;q}$	spezifischer Widerstand	$[W \cdot m]$
$t_{a;q}$	äquivalente Eindringtiefe	[m]
R'	Widerstandsbelag	[W/m]
G'	Leitwertbelag	[S/m]
L'	Induktivitätsbelag	[H/m]
C'	Kapazitätsbelag	[F/m]
n	Verlustwinkel	[-]
s	Verlustwinkel	[-]
a	Dämpfungsmaß	[db/m]
b	Phasenmaß	[rad/m]
c	Lichtgeschwindigkeit im Vakuum	[m/s]
		[J·s]
h	Plancksches Wirkungsquantum	[1.8]
200	magnatical a FaldIcanatanta	[M. a/(A. m.)]
m_0	magnetische Feldkonstante	$[V \cdot s/(A \cdot m)]$
e_0	elektrische Feldkonstante	$[A \cdot s/(V \cdot m)]$
ω	Kreisfrequenz	[1/s]
l	(PROTEL)Lauflänge	[m]
y	Verhältnis Quer- zu Längswiderstand	[-]
R_L	Längswiderstand	[W]
	Querwiderstand	
R_Q		[W]
a	Dämpfungskonstante	[db]
b	Phasenkonstante	[rad]
a/L	normierte Dämpfungskonstante Fall 1	[db]
a/Q	normierte Dämpfungskonstante Fall 2	[db]
n	Brechungskonstante	[-]
K	Kochankonstante	$[m^3/s^2]$
N	Elektronendichte	[1/m ³]
f	betrachtete Frequenz	[Hz; 1/s]
d	Transparenzkonstante	[-]
a_e	Extinktionskonstante	[-]
-		

2 Verwendete Formelzeichen und Abkürzungen

a_a	Absorptionskonstante	[-]
m_e	Extinktionsmodul	[-]
m_a	Absorptionsmodul	[-]
D	optische Dichte	[-]
n	Dispersionskonstante	[-]

3 Allgemeiner Teil

3.1 Die Erde als Daten und Fakten

Geodätisches Referenzsystem 1980 - GRS 80

Äquatorradius	r_a	6378,137	[km]
Polradius	r_p	6356,752	[km]
Abplattung	$f = \frac{(r_a - r_p)}{r_a}$	298,257	[-]
Länge des Äquators	· <i>u</i>	40075,017	[km]
Länge der Meridianellipse		20004,576	[km]
mittlerer Erdradius	$R = \sqrt[3]{r_a^2 \cdot r_p}$	6371,001	[km]
Oberfläche der Erde	•	$5,101\cdot10^{8}$	$[km^2]$
Volumen der Erde		$1,083 \cdot 10^{12}$	$[km^3]$
Masse der Erde		$5,976 \cdot 10^{24}$	[kg]
Masse des Erdkerns		$1,9 \cdot 10^{24}$	[kg]
Masse der Erdkruste		$2,0\cdot10^{22}$	[kg]
Masse der Hydrosphäre		$1,4\cdot 10^{21}$	[kg]
Masse der Atmosphäre		$5,2\cdot10^{18}$	[kg]
mittlere Dichte der Erde		5,52	[g/cm ³]
Winkelgeschwindigkeit		$7,2921\cdot10^{-5}$	[rad/s]
Rotationsdauer		23h 56min 4,09s	[-]
Haupträgheitsmoment		$8,18 \cdot 10^{37}$	[kg·mm ²]
Schwerebeschleunigung mittlere		9,798	$[m/s^2]$
Schwerebeschleunigung Äquator		9,780	$[m/s^2]$
Gravitationskonstante · Erdmasse		$3,986 \cdot 10^{14}$	$[m^3/s^2]$
Gravitationsenergie		$2,3\cdot10^{32}$	[J]
Rotationsenergie je Tag		$2,0\cdot10^{29}$	[J]
Wärmestrom je Jahr		$3.8 \cdot 10^{10}$	[kW]
magnetisches Dipolmoment		$7,9 \cdot 10^{15}$	$[Wb \cdot m]$

3.2 Die Erde als Figur

Die Erdkugel ist bedingt durch die auftretenden Fliehkräfte bei der Rotation über die Zeit von Jahrmillionen, hervorgerufen durch die Plastizität der Erdmaterie, abgeflacht. Größe und Werte der dadurch resultierenden Abweitung und des damit untrennbar verbundenen Offsets der Breitengrade, sowie der Pol- r_p und Äquatordurchmesser r_a , Halbumfang U/2 und das Abflachungsverhältnis f=a/(a-b/2) sind in den folgenden Tabelle dargestellt.

$\mathbf{a} = \mathbf{r}_a$	$\mathbf{b=2}\cdot\mathbf{r}_{p}$	U/2	a/(a-b/2)	Bemerkungen	Modell
Terrestrisch er	mittelt				
6378,000 6371,000 6375,653 6370,283 6377,421 6377,397 6378,388 6371,220 6378,388 6370,000 6378,245	12714,000 12742,000 12713.128 12740,566 12712,070 12712,158 12713,818 12742,440 12713,824 12740,000 12713,726	20004,105 20015,087 - 20012,834 20001,680 20001,712 20004,572 20015,778 - 20011,945 20004,275	303,714 - 334,000 - 298,205 299,156 296,960 - 297,000 - 298,230	Schullehre I Schullehre I Delambre 1840 Bessel 1840 Bessel 1841 Bessel 1841 Helmert 1880 Hayford 1907 Hayford 1910 Krassowski1940 Krassowski1940	Ellipsoid Kugel Ellipsoid Kugel Ellipsoid Ellipsoid Kugel Ellipsoid Kugel
Satellitengestüt	zt				
6378,163 6378,160 6370,000 6378,140 6378,142 6378,137 6367,654 - 6378,245 6366,728 6377,421	12713,554 12713,549 12740,000 12713,510 12713,514 12713,505 12735,309 - 12713,726 12733,456 12712,070	- 20011,945 - 20004,576 20004,576 20005,766 20004,101 20001,666 20001,680	298,240 298,250 - 298,250 298,255 298,257 - - 298,257 - 298,205	Kaula 1961 Iau 1964 IUGG 1967 Lambeck 1971 Khan 1973 Chovitz 1980 Standard I Standard II Standard 1980 Hier genutzt	Ellipsoid Ellipsoid Kugel Ellipsoid Ellipsoid Kugel Ellipsoid Kugel Ellipsoid Kugel Ellipsoid

Das Gradnetz der Erde steht senkrecht zur Erdachse - der Rotationsachse - und besitzt ein Offset zur geodätischen bzw. zur Magnetfeldachse.

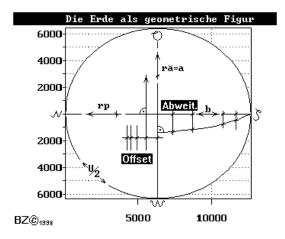
Nach Bessel³,⁴

$\varphi[{f deg}]$	Abweitung [km]	arphi[deg]	Breitenof	fset [km]
0	111,307	0 - 1	_	110,564
5	110,886	5 - 6	110,574	110,569
10	109,627	10 - 11	110,601	110,588
15	107,538	15 - 16	110,643	110,622
20	104,635	20 - 21	110,700	110,672
25	100,938	25 - 26	110,769	110,734
30	96,475	30 - 31	110,849	110,809
35	91,277	35 - 36	110,938	110,894
40	85,384	40 - 40	111,032	110,985

 $^{^3}$ Die Abweitung bezeichnet die Länge eines Breitenkreisbogens zwischen zwei Punkten desselben Breitenkreises der geographischen Breite φ auf der Erdoberfläche. Für eine kugelförmige Erde gilt: Abweitung = $U/360 \cdot cos\varphi$

 $^{^4}$ Das Breitenoffset bezeichnet den Abstand zwischen zwei Breitengraden. Bei einer kugelförmigen Erde ist dieser 111,32km. Infolge der Abplattung der Erde unterscheidet sich der Abstand dennoch. Für eine Erde als Ellipsoid wird angenommen (110,564 + 111,676) /2 = 111,12km.

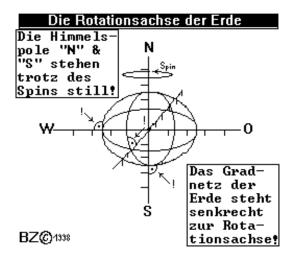
45	78,837	45 - 46	111,129	111,080
50	71,687	50 - 51	111,226	111,178
55	63,986	55 - 56	111,320	111,273
60	55,793	60 - 61	111,408	111,364
65	47,170	65 - 66	111,487	111,448
70	38,182	70 - 71	111,555	111,521
75	28,898	75 - 76	111,609	111,582
80	19,391	80 - 81	111,649	111,629
85	9,733	85 - 86	111,673	111,661
90	0,000	90	111,680	111,676


Breitenoffsetwerte liegen zwischen den angegebenen Grenzen.

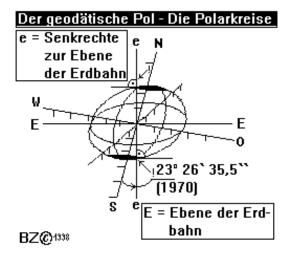
Aus der Abweitung ergibt sich ein (Äquatorial) Erdumfang von $U=111,307\cdot 360=40.070,52$ km.

Aus dem mittleren, kugelförmigen Breitengradabstand ergibt sich ein (Zirkumpol) Erdumfang von $U=111,32\cdot 360=40.075,2$ km.

Aus dem mittleren, ellipsoiden Breitengradabstand ergibt sich ein (Zirkumpol)Erdumfang von $U=111,12\cdot 360=40.003,2$ km.


Im weiteren Verlauf werden die Berechnungen nach Bessel herangezogen - \mathbf{r}_a ; \mathbf{r}_p ; Ellipsoid.

3.3 Die Poldefinitionen der Erde


Rotationsachse

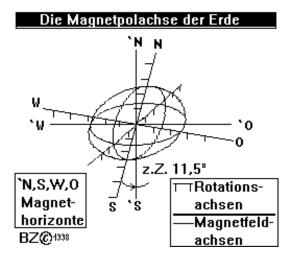
Die zwei Punkte der Himmelssphäre, die bei der scheinbaren Bewegung des Himmels in Ruhe bleiben, nennt man Himmelspole. Eine gedachte Gerade zwischen ihnen durchstößt die Erde im Nordund Südpol. Die Strecke zwischen Ihnen gilt als Rotationsachse.

• Geodätische Achse

Ist die Achse der Erde, welche senkrecht zur Ebene der Erdbahn liegt. Durch die Rotation beschreibt die Achse jedoch keinen fixen Punkt, sondern einen Kreis, welcher als Polarkreis bezeichnet wird.

Magnetpolachse

Die theoretischen geomagnetischen Pole liegen an Stellen, an denen die Verlängerung des im Erdmittelpunkt gedachten Dipols, die magnetische Achse der Erde, die Erdoberfläche durchstößt.


Ihre geografischen Koordinaten sind auf 78,5° n. Br. und 69° w. L. bzw. 78,5° s. Br. und 111° ö. L. lokalisiert.

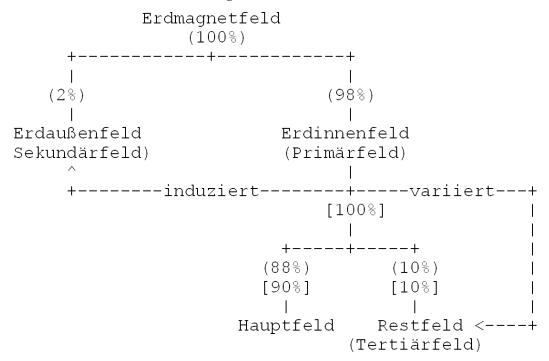
In den erdmagnetischen Haupt- oder Inklinationspolen verschwindet die Horizontalintensität, eine Inklinationsnadel weist hier lotrecht. Ihre Lage verändert sich im Laufe der Zeit allmählich. Als Ursache werden Materieströmungen im elektrisch gut leitenden, flüssigen Erdkern angenommen.

Der dem geografischen (Rotations-)Hauptpol benachbarte arktische Magnetpol wurde erstmalig 1831 von dem britischen Polarforscher J. C. Ross auf der Halbinsel Boothia Felix mit 70° 15' n. Br. und 96° 45' w. L. verläßlich festgestellt. Umfangreiche Vermessungen des kanadische Staates ergaben für 1964 seine Lage auf der Südspitze der Bathurst- Inseln mit 75° 30' n. Br. und 100° 30' w. L. Seit 1831 hat sich danach der arktische Pol um rund 550 km in nordwestlicher Richtung bewegt.

Die gegenwärtige Durchschnittsgeschwindigkeit beträgt demnach 7,5 km/a. Wenn dieser Trend anhält, werden im Jahre 2185 geographischer (Rotations-)Pol und magnetischer Pol in der Lage völlig übereinstimmen.

Der antarktische Pol liegt nach russischen Berechnungen bei 65° 10' s. Br. und 138° 40' ö. L. (1983).

• Andere


Danach gibt es noch in der Praxis andere genutzte Poldefinitionen, wie z. B. der Kältepol oder der Pol der relativen Unzugänglichkeit.

3.4 Der Erdmagnetismus

Ursprung des erdmagnetischen Felds

Das Erdinnenfeld, das etwa 98% des erdmagnetischen Feldes beträgt, entsteht im Erdinnern, reicht aber auch etwas in den Weltraum hinaus. Das Erdaußenfeld mit etwa 2% hat seinen Ursprung in den Ionossphärenschichten in etwa 100 bis 1000 km Höhe. Nach theoretischen und experimentellen Untersuchungen in der Magnetohydrodynamik wird die Entstehung beider Teilfelder auf elektrische Ströme zurückgeführt, deren Ursache bewegte elektrische Ladungen sind. Die Bewegung der elektrischen Ladungen ist in der Ionosphäre relativ groß und führt zu Variationen, zu raschen Änderungen der Magnetfelder. Das erdmagnetische Hauptfeld mit über 90% des Innenfeldes beruht auf einer Wechselwirkung zwischen den Wärmetransportbewegungen des flüssigen äußeren Erdkerns zwischen 2900 und 5100 km Tiefe und der Rotation der Erde. Dabei bilden sich in dem elektrisch gut leitendem Erdkern Strömungen aus, die im Wesentlichen rotationssymmetrisch zur Erdachse verlaufen. Das flüssige Erdinnere rotiert innen schneller als außen. Diesen Effekt überlagern sich Turbulenzfelder mit vorwiegend radialer Strömungsrichtung. Nach der Dynamotheorie des erdmagnetischen Feldes führen diese Bewegungen der ionisierten Materie, wie bei einer sich drehenden Dynamomaschine zu elektrischen Strömen und damit zu Magnetfeldern. Das Restfeld, die Differenz zwischen Erdinnen- und Hauptfeld, die weniger als 10% beträgt, hat einen regionalen Charakter im Unterschied zum Hauptfeld, dessen Wirkungen den ganzen Erdball umspannen. Es beruht zum Teil auf der recht unterschiedlichen Magnetisierung der oberen Erdkruste. Durch Säkularvariationen ändern sich Lage und Intensität des Restfeldes im Laufe der Zeit.

• Definition der Teilfelder des Erdmagnetfeldes

• Elemente des erdmagnetischen Feldes

Das erdmagnetische Feld ist eine Vektorgröße, die räumlich und zeitlich variiert. Für einen gegebenen Zeitpunkt ist sie an irgendeinem Beobachtungsort durch die Angaben von drei Komponenten bestimmt. Die gebräuchlichsten Komponenten, die Elemente des Feldes, sind die Beträge der Total-, der Vertikal- und der Horizontalintensität sowie der Deklination D [lat. Abweichung] und die Inklination. Die Totalintensität oder magnetische Feldstärke F, die gesamte auf einer Magnetnadel wirkende erdmagnetische Kraft, setzt sich zusammen aus der Horizontalintensität H und der Vertikalintensität H und der Vertikalintensität H und der Horizontalintensität bildet sie den Winkel der Inklination H [lat. Neigung]. Die Größen H0, H1, H2 werden als magnetische Induktion in der Einheit Tesla H1 (1 T = 1 Wb/m²), gemessen; in der Geophysik ist die kleinere Einheit 1 nT = H1 üblich. Die Totalintensität an der Oberfläche der Erde liegt bei 69 H1 in der Nähe der Magnetpole und 30 H1 in der Nähe des magnetischen Äquators. Lokale Erdmagnetische Anomalien (Tertiärfeld), d. h. räumlich relativ eng

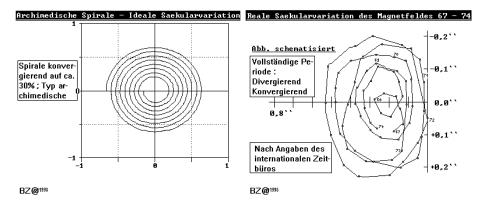
begrenzte Abweichungen vom allgemeinen Verlauf des Hauptfeldes über große Massen von magnetisch wirksamen Gesteinen oder von Erzen in der Erdkruste können ein Mehrfaches dieser Normalwerte erreichen; z. B. wurden im Bereich der Kursker Magnetanomalie Maximalwerte um 200 μ T gemessen.

• Jahresmittel der erdmagnetischen Elemente vom Adolf- Schmidt- Observatorium für Erdmagnetismus in Niemegk bei Potsdam (52° 4,3′ n. Br. ; 12° 40,5′ ö. L.)

Absolutwerte

Jahr	Deklination	Inklination	Total-	Horiz	Vertikalintensität [μ T]
1960	-1° 55,9'	67° 14,1'	47.796	18.495	44.072
1964	-1° 40,8'	67° 11,4'	47.895	18.568	44.150
1968	-1° 29,8'	67° 10,2'	47.997	18.623	44.236
1972	-1° 21,1'	67° 7,1'	48.134	18.716	44.347
1976	-1° 2,1'	67° 5,4'	48.280	18.795	44.472
1980	-0° 35,0'	67° 6,2'	48.382	18.825	44.570

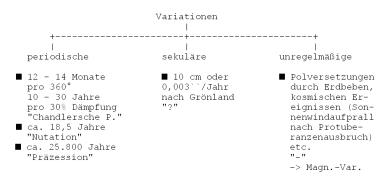
Relativwerte 1960 = 0nT


Jahr	Deklination	Inklination	Total-	Horiz	Vertikalintensität [μ T]
1960	-1° 55,9'	67° 14,1'	0	0	0
1964	-1° 40,8'	67° 11,4'	99	73	78
1968	-1° 29,8'	67° 10,2'	201	128	164
1972	-1° 21,1'	67° 7,1'	338	221	275
1976	-1° 2,1'	67° 5,4'	484	300	400
1980	-0° 35,0°	67° 6,2'	586	330	498

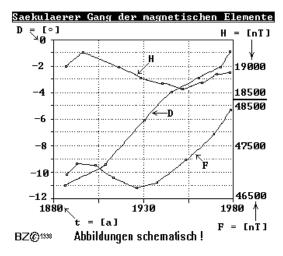
3.5 Die Variationen des erdmagnetischen Feldes

• - der Rotationsachse

Die Polachse schwankt in engen Grenzen mit einer Periode von 12 bis 14 Monaten, der Chandlerschen Periode. Diese Verlagerungen der Erdachse werden durch Masseverlagerungen in und auf der Erde bzw. in der Erdatmosphäre verursacht, z. B. durch Verschiebung von Erdschollen, durch wechselnde Schnee- und Eisverhältnisse in den Polargegenden oder durch Verlagerung von Luftmassen. Weitere Bewegungen der Erdachse sind die Nutation und die Präzession mit Perioden von etwa 18,5 und 25.800 Jahren. Neben diesen Regelmäßigen Schwankungen verringert sich die Rotationsgeschwindigkeit kontinuierlich durch die Gezeitenreibung. Man schätzt, daß im Devon - d. h. vor rund 400 Mill. Jahren - die Länge eines Tages nur etwa 22 Stunden dauerte.


Der internationale Dienst zur Beobachtung der Polbewegung bedient sich bei der auf 39° 08° n. Br. liegenden Bodenstationen Mitsusava (Länge 141°), Kitab (67°), Carloforte (8°), Heitersberg (-77°) und Yukaya (-123°), in denen über die Breitenveränderungen die Polschwankungen verfolgt werden, neben der periodischen gelang es auch eine sekuläre Polbewegung nachzuweisen, derzufolge der Nordpol mit 0,003" oder 10cm Jahresgeschwindigkeit in Richtung Grönland driftet.

Das internationale Zeitbüro benutzt neben Angaben aus der Breitenänderung auch die sich verschiebenden Werte geografischer Länge der Observatorien nationaler Zeitdienste, um Veränderungen der Erdrotation zu erforschen. So dreht sich die Erde wegen der winterlichen Luftmassenverteilung im Frühjahr und Frühsommer der Nordhalbkugel um 0,5m/s langsamer als im Herbst. Tägliche Abweichungen ergeben sich durch die Gezeiten der Atmosphäre, des Wassers und selbst des Festlandes, das am Äquator bis zu 0,5 m angehoben wird.


Auch die präzisierten periodischen Polwanderungen erlauben Rückschlüsse auf die innere Beschaffenheit des Planeten. Hinweise auf die Elastizität des Erdkörpers lassen sich aus der kurzfristigen Polwanderung mit der Chandlerschen Periode ableiten, die bei einem starren Erdkörper nur 305 Tage betragen würde und deren Kreisform infolge der Viskosität des Erdinnern sich im Zeitraum von 10 bis 30 Jahren spiralförmig bis zu 30% des Ausgangswertes abdämpft. Die Pole beschreiben dabei Wege von 20 bis 5m; sie werden mitunter von Polversetzungen in der Größenordnung einiger Meter begleitet, offensichtlich verursacht durch Massebewegungen bei großen Erdbeben. Ob diese Bahnsprünge als ein wichtiges Indiz für die komplexe Erdbebenvorhersage zu verwenden sind, wird sich ergeben.

• Übersicht über die bekannten Variationen der Erdrotationsachse

• - der Magnetfeldachse

Die zeitliche Änderung des erdmagnetischen Feldes teilt man ebenfalls in regelmäßig periodische, sekuläre und unregelmäßige Variationen ein. Von den regelmäßig periodischen Variationen sind die täglichen und die jährlichen Schwankungen am deutlichsten. Sie sind am Tage stärker als in der Nacht, nehmen vom Äquator nach den Polen hin zu und sind in den gemäßigten Zonen im Sommer größer als im Winter. In Nordmitteleuropa zeigt ein Kompaß um 8 Uhr am weitesten östlich und erreicht gegen 14 Uhr seinen größten westlichen Ausschlag; im allgemeinen sind diese Deklinationsschwankungen aber kleiner als $0,2^{\circ}$.

Säkulärvariationen verlaufen innerhalb einiger Jahre fast linear. In größeren Zeiträumen treten beträchtliche Schwankungen der erdmagnetischen Elemente auf, die Polverlagerungen anzeigen.

Unregelmäßige Variationen großer Intensität werden als magnetische Stürme oder Gewitter bezeichnet. Sie treten zusammen mit Polarlichtern auf und sind mit Ausbrüchen ultravioletter Strahlung auf der Sonne in Beziehung zu bringen. Ihre Totalintensität kann für Minuten 1 μ T, ihre Deklination 3° überschreiten.

• Übersicht über die bekannten Variationen des Erdmagnetfeldes.

3.6 Die Magneto-, Exo- und Ionosphäre

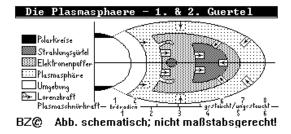
• Das äußere Magnetfeld und deren Sphären

Ab etwa 100 bis 150km Höhe zeigt sich die Wirkung des irdischen Magnetfeldes auf die Ionen der Atmosphäre. Durch die Rotation des Magnetfeldes enthält diese Magnetosphäre, die bis in den interplanetarischen Raum reicht, hochenergetische Partikel. Ihre Gliederung in drei Strahlungsgürtel, auch Van- Allen- Gürtel nach einem amerikanischen Wissenschaftlicher genannt und deren Deformation durch den Sonnenwind wurde insbesondere durch Meßsatelliten erforscht.

Der innere Strahlungsgürtel beginnt über dem Äquator bereits in 700km und reicht bis 6.500km Höhe, sein Intensitätsmaximum liegt zwischen 3.000 und 4.000km. Er erstreckt sich bis maximal 40° beiderseits des Äquators und besteht vorwiegend aus energiereichen Elektronen von etwa 10keV und aus Protonen unter 80 MeV, die durch von der Erdatmosphäre zurückgestreute kosmischen Strahlung gebildet wurden.

Der äußerste Strahlungsgürtel, der aus Elektronen von über 45keV des Sonnenplasmas besteht, reicht wesentlich weiter polwärts und hat sein Intensitätsmaximum in 14.000 bis 20.000km Höhe.

Der mittlere Strahlungsgürtel dazwischen besteht ebenfalls aus Elektronen über 45keV und ist während der Dauer magnetischer Störungen besonders ausgeprägt. Beide Elektronengürtel sind getrennt durch eine Zone niedrigenergetischer Elektronen, der Dichte mit 10⁶/cm³ aber das Tausendfache beträgt.


Ein als Sonnenwind bezeichneter Strom von Protonen und Elektronen der Sonne mit Geschwindigkeiten von 400 bis 700km/s drückt die Magnetosphäre auf der, der Sonne zugekehrten Seite auf etwa 9 Erdradien zusammen, vorgelagert ist ein etwa 2 bis 3 Erdradien breiter Turbulenzbereich. Auf der Nachtseite der Erde erstreckt sich ein polarer Schweif der Magnetosphäre mit einem Durchmesser von 50 bis 70 Erdradien bis zu einer Entfernung von 1.000 Erdradien in den interplanetaren Raum hinaus.

Niedrigenergetisches, sogenanntes thermisches Plasma unter 10keV und von wesentlich geringerer Dichte füllt die innere Magnetosphäre, die Plasmasphäre und -schicht sowie den gesamten erdnahen polaren Schweif.

Die Schicht über etwa 450km wird Exosphäre genannt. In ihr ist die kinetische Energie der Teilchen durch mechanische Kräfte und in Wechselwirkung mit elektromagnetischen Feldern so groß, dass sie gegen die Gravitation von der Erde entweichen. Da die Energieaufnahme von der Gasart, von deren Dichte und ihrer Temperatur abhängt, steht die Grenze nicht genau fest; in großen Höhen ist die Dichte so gering, daß sich die Teilchen nur selten treffen.

In der bis 65km Höhe reichenden Neutrosphäre reicht die Energie der Sonnenstrahlung zur Ionisierung nicht mehr aus. Mit der Höhe steigt aber die Ionenkonzentration von rund 100 Ionen/cm³ in 65km Höhe auf mehrere 10⁶ Ionen/cm³ in 200 bis 300km Höhe.

Der Bereich über der Neutrosphäre bis 1000km Höhe wird als Ionosphäre genannt. Durch die starke Ionisation hat sie gute elektrische Leitfähigkeit und damit große Bedeutung für Ausbreitung und Reflexion der Funkwellen. Die D- Schicht in etwa 60 bis 90km Höhe wird nachts meist abgebaut. Die E- oder Kennely- Heaviside- Schicht in 90 bis 140km sowie die F1- und die F2- oder Appleton-Schicht zwischen 150 und 500km Höhe bilden die eigentliche Ionosphäre. Sie variieren sehr nach Höhe und Mächtigkeit und zeigen einen täglichen wie jahreszeitlichen Gang. Der Bereich zwischen Ionosphäre und interplanetarem Raum wird als Protonosphäre bezeichnet, weil sich dort Protonen im Magnetfeld der Erde konzentrieren.

• Aufbau der Magnetosphäre, schematisch

```
p+ + e- mit 400 bis 700 km/s
                             Turbulenzbereich
                       Breite 12.500 bis 20.000 km
                               (Magnetosphäre)
                                (Exosphäre)
                                  innerer äußerer äußerster Strahlungsgürtel Strahlungsgürtel Strahlungsgürtel
                            Van- Allen- Gürtel
             (innerhalb Plasmasphäre)
       Bereich: Bereich: 700 bis 6.500 km (dazwischen)
      Bereich:
                                                          25°n.Br.-25°s.Br.
       40°n.Br.-40°s.Br.
                                 Maximum:
                                                         Maximum:
      Maximum:
      3.000 bis 4.000 km

Inhalt:

e- von 10 keV
 p+ von 80 MeV

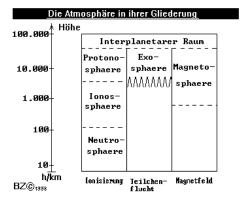
Dichte:

Adamata.

Inhalt:
 e- von 45 keV
 p- von 45 keV
                                                          14.000 bis 20.000 km
                                  e- von 45 keV e- von
      Inhalt:
                                                         e- von 45 keV
                                Dichte:
10<sup>3</sup>/cm<sup>3</sup>
      Dichte:
                                                         Dichte:
       10^{3}/cm^{3}
                                                         10^{3}/cm^{3}
                        Pufferzone I Pufferzone II e- mit 10^6/\mathrm{cm}^3 e- mit 10^6/\mathrm{cm}^3
                            niedrigenergetisch niedrigenergetisch
                                Ionosphäre
                        Bereich 0 bis 100 - 150 km
                                (Neutrosphäre)
                                   (Erde)
                                      Ionosphäre
                        Bereich 0 bis 100 - 150 km
                              Polarer Schweif
                       Bereich 100 - 150 bis 30.000 - + Je nach

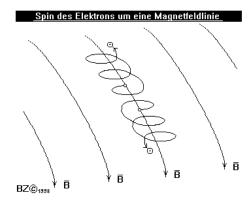
45.000 - |- Sonnenwind-

6.500.000 km + aktivität
          e Plasmasphäre Magnetosphäre polarer Schweif (mit den Strah- innere erdnaher lungsgürteln)
|
Exosphäre
                            Inhalt: thermisches Plasma
                                     niedrigenergetisch <10 keV
                ----- Bereich: ab etwa 450 km
                            Inhalt : entweichende Gasteilchen
                                        durch deren kinetische Energie
```


Sonnenwind

• Allgemeines über die Ionosphäre

Die Ionosphäre erstreckt sich von etwa 80km Höhe bis in ca. 800km Höhe. Darüber geht sie allmählich in den Weltraum über. Der Grenzbereich zwischen Ionosphäre und Weltraum trägt die Bezeichnung "Exosphäre". Die Temperatur beträgt hier etwa 1000 bis 2500° Grad Kelvin. Natürlich sind diese Temperaturwerte tages- und Jahreszeitlich Änderungen unterworfen und stark von der Intensität der Sonneneinstrahlung abhängig.


In der oberen Erdatmosphäre trifft man überwiegend auf Sauerstoff, Stickstoff, Wasserstoff und Helium. Diese Gase können ionisieren, wenn von der Sonne ausgesandte ultraviolette Strahlungen, Teilchenstrahlungen oder auch Röntgenstrahlungen auf diese Gase treffen - IONISATION. Wenn jedoch die äußeren Kräfte nachlassen, finden die herausgetrennten Elektronen nach und nach zu ihren Ionen zurück. Es entstehen wieder neutrale Gase. Dieser Vorgang, das Gegenteil der Ionisation ist die REKOMBINATION. Bei den Ionosphärenschichten ergibt sich tagsüber während der Sonneneinstrahlung in der Regel eine ständige Balance von Ionisation und andauernder Rekombination.

Mit dem allabendlichen Sonnenuntergang sowie zu Zeiten einer Sonnenfinsternis nimmt die Ionisation ständig ab, da die Zufuhr von UV- Strahlung fehlt. Bei der D-, E- und F1-Schicht überwiegt bei Nacht die Rekombination, diese Schichten bauen sich während der Nacht fast völlig ab. Lediglich die in sehr großer Höhe befindlichen F2-Schicht (300- 400 km) kann sich auch in der Nacht halten. In dieser großen Höhe ist die Atomdichte schon so gering, dass die freien Elektronen sehr lange suchen, bis sie ein Ion gefunden haben. Sehr viele Elektronen der F2-Schicht schaffen dies nicht in einer einzigen Nacht.

• Der Einfluß des Erdmagnetfeldes auf die Ionosphärenteilchen.

Wenn sich Teilchen in der oberen Ionosphäre mit einer beliebigen Geschwindigkeit fortbewegen, so werden sie von den magnetischen Kraftlinien des Erdmagnetfeldes eingefangen und aus der Bahn der Magnetfeldlinien derart abgelenkt, dass sie sich wie eine Spirale um die Kraftlinien wickeln. Die Winkelgeschwindigkeit des um die Kraftlinie rotierenden Teilchens wird bestimmt durch seine elektrische Ladung, durch seine Masse und durch die Stärke des erdmagnetischen Feldes. Die Frequenz der Rotation wird als Gyrofrequenz bezeichnet. Rotierende Elektronen und dessen Auswirkungen sind hinreichend bekannt und beschrieben worden.

4 Der Protonen-Elektronen-Komplex - PROTEL

4.1 Grundlegendes

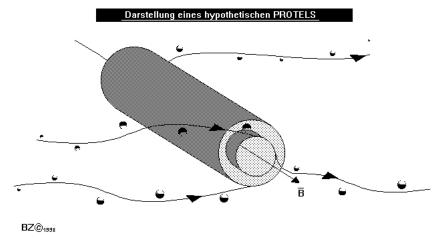
Ursache für die nun folgenden Untersuchungen war die Überlegung, dass nicht nur das Elektron in eine Gyrobahn einschwenkt, sondern auch das Proton durch die Magnetfeldlinie gezwungen wird, eine Gyrofrequenz anzunehmen. Sollte dies der Fall sein, dann können Elektronen und Protonen zusammen ein Komplex bilden. PROTEL- Komplexe würden im Falle ihrer Existenz folgende voraussagbare Eigenschaften haben:

4.2 Vorausgesagte Eigenschaften

• PROTELs sind kurzlebig

PROTELs werden enorme Ausmaße haben, besonders die Gyrobahnen der Protonen sind bedingt durch die Schwere dieser Korpuskeln sehr groß. Konsequenz dieser Tatsache ist, daß innerhalb eines PROTELs nicht eine, "die" Magnetfeldlinie liegen wird. Inner- und auch außerhalb einer Gyrobahn sind selbstverständlich mehrere mögliche Feldlinien, welche fähig sind Gyrobahnen zu erzwingen. Schon in der Rotation befindliche Teilchen können so von benachbarten PROTELs abgesaugt werden. Letztendlich wird die Dichte der rotierenden Materie so gering geworden sein, dass das PROTEL aufhört zu existieren. In dem hier vorliegenden Fall wird der Wegfall der typischen Eigenschaften eines PROTELs auch mit dem Aufhören der Existenz gleichgesetzt.

• PROTELs sind langlebig


Genauso, wie es möglich ist, dass Teilchen abgesaugt werden, können auch welche zugewonnen werden. Das Magnetfeld ist inhomogen, dies bewirkt eine relative Stabilität innerhalb dichter Feldzonen. Ein Absaugen durch andere PROTELs ist dann nicht mehr möglich. Der Komplex kann dann über längere Zeit bestehen bleiben.

• PROTELs kommen nur in magnetisch ruhigen Zonen vor

Für den Aufbau eines PROTELs ist eine quasilineare Magnetfeldlinie nötig, ist diese Voraussetzung nicht gegeben, dann wird sich auch kein Komplex aufbauen. Während Magnetfeldstürme mit einem K- Index größer 4 (Logaritmisches Maß für die größten Magnetfeldänderungen innerhalb von drei Stunden im Bereich 0 bis 9) wird kein PROTEL sich aufbauen können.

• PROTELs haben Eigenschaften von Hohlleiter und Koaxleitungen

Bedingt durch den unterschiedlichen Radius von Gyroelektron und Gyroproton, sowie der Tatsache, dass ein PROTEL kein elektrischer Leiter im klassischem Sinne ist, werden sich beide Eigenschaften überlagern und unscharf nebeneinander nachweisen lassen. Koaxialkabel mit "Innen- und Außenleiter", sowie eben ein durch das Proton oder/und Elektron umschriebener Hohlleiter, deren Eigenschaften die Ergebnisse der Messungen bestimmen.

[001]ff.

4.3 Berechnungsgrundlagen I - Das PROTEL im Allgemeinen

• Querschnittswerte des PROTELs

Entscheident für die Eigenschaften eines PROTELs ist der Radius von Proton- bzw. Elektronenschlauch. Prinzipiell entsteht solch ein Schlauch, wenn das betreffende Korpuskularteilchen von einer Magnetfeldlinie eingefangen wird. Grund für die dann erfolgende Rotation ist die wirkende Lorentzkraft (als UR- Ursache der Existenz von PROTELs) von Feldlinie und Elementarteilchen. Aus der Berechnungsgrundlage der Lorentzkraft ist zu sehen, daß neben der Konstante der Elementarladung und magnetischer Flußdichte des Erdmagnetfeldes (als quasikonstante Werte) die Geschwindigkeit des Elektrons bzw. Protons die Kraft bestimmt und so letztendlich auch die Radien der Schläuche. Für die gesamte Berechnung der physikalischen Eigenschaften vom Aufbau, wie aber auch die des Verhaltens bei einer "Nutzung" als Wellenleiters sind so folgende Ausgangswerte vonnöten:

Mittlerer Energieinhalt der beteiligten Elektronen	[keV]
Mittlerer Energieinhalt der beteiligten Protonen	[MeV]
Mittlere magnetische Flußdichte des Erdmagnetfeldes	$[\mu T]$
Mittlere Elektronendichte	$[10^6/\text{cm}^3]$
Mittlere Protonendichte	$[10^6/cm^3]$

Aus diesen Werten können dann die grundlegenden Eigenschaften berechnet werden, wie:

Anfangsgeschwindigkeit des Elektrons/ Protons	*		
Endgeschwindigkeit des Elektrons/ Protons	*		
relativistische Masse des Elektrons/ Protons	*		
wirksame Lorentzkraft auf das Elektron/ Proton	*		
Radialbeschleunigung auf das Elektron/ Proton	*		
Radialradius des Elektrons/ Protons	*		
Trägheitsmoment des rotierenden Elektrons/ Protons	*		
Rotationsenergie des Elektrons/ Protons	*	@	
Lageenergie des Elektrons/ Protons	*		
Äquivalente Materiewellenfrequenz von Elektron/ Proton	*		
Gyrofrequenz des Elektrons/ Protons			#
koaxiale Grenzfrequenz des Elektron- bzw. Protonschlauchs			#
Verhältnis Elektron- zu Protonradius	*		
frequenzunabhängige Impedanz des Elektron- Protonschlauches		@	#
Äquivalente Elektronen- bzw. Protonenspannung	*		
Äquivalenter Elektronen- bzw. Protonenstrom	*		
Äquivalenter Elektronen- bzw. Protonenwiderstand	*		
Spezifischer Elektronen- bzw. Protonenwiderstand	*		
Äquivalente Elektronen- bzw. Protoneneindringtiefe	*		
Widerstandsbelag			#
Leitwertbelag			#
Induktivitätsbelag			#
Kapazitätsbelag			#
Verlustwinkel	*		
frequenzabhängige Impedanz des Elektron- Protonschlauches			#
Dämpfungskonstante			#
Phasenkonstante			#

Dabei bezeichnet das Zeichen * notwendige Zwischenwerte und # die erwarteten Endwerte des PROTELs. Mit @ versehene Werte sind auch als Kontrollwerte nutzbar. Grau geschriebene Berechnungsgrundlagen wurden im Laufe der Revisionen ersetzt und ausgegliedert.

• Gleichungen und Berechnungsvorschriften

Im allgemeinen ist von den in der Ionosspähre vorkommenden Elektronen und Protonen dessen Bewegungsenergie bekannt. Aus Gründen der Herkunft und der Tatsache, dass in der Ionosspäre die freie Wegstrecke extrem hoch ist, also Stoßpartner recht selten vorkommen, welche die Bewegungsenergie absorbieren bzw. sie, die Korpuskeln, zum Rekombinieren zwingen, ist deren Geschwindigkeit bereits in solchen Größenordnungen zur Lichtgeschwindigkeit vorgerückt, daß die Massedilatation nicht unberüchsichtigt sein sollte. Berechnungsgrundlagen für die Ermittlung von Ruhe- bzw. relativistischer Masse sind bekannt und werden nicht weiter betrachtet. Das Ergebnis sind dann die Werte der relativistischen Masse und Geschwindigkeit von Elektron und Proton.

$$v_0 = \sqrt{\frac{E_v}{m_r}}$$
$$m_r = \frac{E_v}{v_0^2}$$

Der nächste Schritt - Die Radien.

 \Rightarrow

$$F_L=e\cdot v_0\cdot B \qquad \text{mit} \qquad \vec{v}\bot\vec{B} \qquad \text{und} \qquad \vec{F}\bot\vec{v}$$

$$a_r=\frac{F_L}{m_r}=\frac{v_0}{m_r}\cdot e\cdot B$$

$$r=\frac{v_0^2}{a_r}=\frac{v_0\cdot m_r}{e\cdot B}$$

Die charakteristischen Frequenzen, die Gyrofrequenz und koaxiale Grenzfrequenz eines PROTEL-Komplexes sind von grundlegender Bedeutung und beeinflussen maßgeblich dessen Verhalten als Leiter von elektromagnetischen Wellen.

$$f_{g,e} = \frac{v_{0,e}}{2\pi \cdot r_e}$$
 $f_{g,p} = \frac{v_{0,p}}{2\pi \cdot r_p}$ $f_K = \frac{c}{\pi \cdot (r_e + r_p)}$

Ein weiterer Zwischenwert auf dem Wege der Berechnungsgrundlagen ist das Verhältnis von koaxialer Grenzfrequenz- zu Gyrofrequenz, das v- Verhältnis.

$$\upsilon = \frac{f_g}{f_k}$$

$$\upsilon_e = \frac{1}{2} \cdot \frac{v_{0;e}}{c} \cdot \frac{r_e + r_p}{r_e} \qquad \qquad \upsilon_p = \frac{1}{2} \cdot \frac{v_{0;p}}{c} \cdot \frac{r_e + r_p}{r_p}$$

Letztendlich ist so mittels v ein Kontrollverhältnis bekannt.

$$\frac{\upsilon_p}{\upsilon_e} = \frac{m_{r;e}}{m_{r;p}}$$

Beispielswerte:

 \Rightarrow

$$E_{v;e} = 10 \text{ keV} \qquad v_{0;e} = 500 \text{ km} \cdot \text{s}^{-1}$$

$$E_{v;p} = 80 \text{ MeV} \qquad v_{0;p} = 500 \text{ km} \cdot \text{s}^{-1}$$

$$\Rightarrow \qquad m_{r;e} = 0,6408706260 \cdot 10^{-26} \text{ kg} \qquad m_{r;p} = 0,5126965008 \cdot 10^{-22} \text{ kg}$$
 Mit:
$$B = 48 \cdot 10^{-6} \text{ T} = 48 \ \mu\text{T} \qquad e = 0,1602176565 \cdot 10^{-18} \text{ C}$$

$$\Rightarrow \qquad r_e = 416, \bar{6} \text{ m} \qquad r_p = 3, \bar{3} \cdot 10^6 \text{ m}$$

Die Frequenzen:

 $f_{g;e}=190,9859317\approx 191~{\rm Hz}$ $f_{g;p}=0,02387324146\approx 0,024~{\rm Hz}$ $f_K=28,62449289\approx 28,6~{\rm Hz}$ Zur Information, die Verhältnisse:

$$v_e = 6,672115815$$
 $v_p = 0,0008340144768$

Wenn behauptet wird, dass sich ein solcher Komplex wie ein koaxialer Wellenleiter verhält, dann ist es möglich die reelle Impedanz Z zu berechnen.

$$Z = \frac{Z_0}{2\pi} \cdot \ln \frac{r_p}{r_e} = \sqrt{\frac{L'}{C'}}$$

Wobei $Z_0=\sqrt{\frac{\mu_0}{\varepsilon_0}}\approx 376,73\Omega$ der Wellenwiderstand einer elektromagnetischen Welle im Vakuum ist.

Die Leitungsbeläge L' und C' sind aus Berechnungsgrundlagen der Elektrodynamik ermittelbar.

$$L' = \frac{\mu_0}{2\pi} \cdot \ln \frac{r_p}{r_e} \qquad \qquad C' = \frac{2\pi \cdot \varepsilon_0}{\ln \frac{r_p}{r_e}}$$

Die Leitungsbeläge R' und G' sind abschätzbar.

$$R' = \frac{R^*}{2\pi} \cdot \left(\frac{1}{r_p} + \frac{1}{r_e}\right) = \frac{1}{2\pi} \cdot \left(\frac{R_p^*}{r_p} + \frac{R_e^*}{r_e}\right) \qquad G' = 2\pi \cdot f \cdot C' \cdot \tan \delta$$

Wobei f die Signalfrequenz darstellt. Der Verlustwinkel $\tan\delta$ ist definiert durch:

$$\delta = 2\pi \cdot f \cdot R' \cdot C'$$

Die Berechnung des Widerstandes \mathbb{R}^* ergibt sich aus den Spannungen und Strömen.

$$R^* = \frac{U^*}{I^*}$$

Mit:

$$U_{e;p}^* = \frac{E_{v;e;p}}{2} \cdot \frac{r_{e;p}^2 \cdot \rho_{e;p}}{e} \cdot \pi$$

Und:

$$I_{e;p}^* = \frac{v_{0;e;p}}{2} \cdot r_{e;p} \cdot \rho_{e;p} \cdot e$$

 \Rightarrow

$$R_e^* = E_{v,e} \cdot \frac{r_e}{v_{0:e} \cdot e^2} \cdot \pi \qquad \qquad R_p^* = E_{v,p} \cdot \frac{r_p}{v_{0:p} \cdot e^2} \cdot \pi$$

Damit ist der Widerstandsbelag definiert.

$$R' = \frac{1}{2 \cdot e^2} \cdot \left(\frac{E_{v;p}}{v_{0:p}} + \frac{E_{v;e}}{v_{0:e}} \right)$$

Der Leitungswellenwiderstand der koaxialen Struktur ist nun ebenfalls bekannt.

$$Z_L = \sqrt{\frac{R' + j \cdot \omega \cdot L'}{G' + j \cdot \omega \cdot C'}}$$

Im allgemeinen gilt hier G' = 0 und R' >> L' bei $f \leq f_K$.

$$Z_L = \sqrt{-j \cdot \frac{R'}{\omega \cdot C'}}$$

Beispielswerte - Fortsetzung:

Induktivitäts- und Kapazitätsbelag:

$$L' = 0,1797439363 \cdot 10^{-5} \approx 1,8 \ \mu \text{H} \cdot \text{m}^{-1} \qquad \qquad C' = 0,6190195221 \cdot 10^{-11} \approx 6,2 \ \text{pF} \cdot \text{m}^{-1}$$

 $Z = 538,8587650 \approx 539 \ \Omega$

Widerstands- und Leitwertbelag:

$$R' = 0,4993831625 \cdot 10^{+21} \ \Omega \cdot m^{-1} \approx 0,5 \ Z\Omega \cdot m^{-1}$$
 $G' = 0 \ S \cdot m^{-1}$

Zur Information, die äquivalenten Spannungen und Ströme:

$$\begin{array}{ll} U_e^* = 0,273 \cdot 10^{22} \; \mathrm{V} & I_e^* = 16,69 \; \mathrm{A} & R_e^* = 0,163 \cdot 10^{21} \; \; \Omega \\ \\ U_p^* = 0,140 \cdot 10^{34} \; \mathrm{V} & I_p^* = 1,344 \cdot 10^5 \; \mathrm{A} & R_p^* = 0,105 \cdot 10^{29} \; \; \Omega \end{array}$$

Die Fortpflanzungskonstante γ ist von fundamentaler Bedeutung in der Leitungstheorie.

$$\gamma = \sqrt{(R' + j \cdot 2\pi \cdot f \cdot L') \cdot (G' + j \cdot 2\pi \cdot f \cdot C')} = \alpha + j \cdot \beta$$

Dämpfungs- α und Phasenmaß β sind aus γ zu ermitteln.

$$\alpha = \text{Re }(\gamma) \quad \beta = \text{Im }(\gamma)$$

Die recht umfangreichen Grundlagen von Re (γ) und Im (γ) sind mit den gegebenen Bedingungen vereinfachbar.

$$\alpha = \frac{1}{2} \cdot \sqrt{2 \cdot R' \cdot G' - 8\pi^2 \cdot f^2 \cdot L' \cdot C' + 2 \cdot \sqrt{(R'^2 + 4\pi^2 \cdot f^2 \cdot L'^2) \cdot (G'^2 + 4\pi^2 \cdot f^2 \cdot C'^2)}}$$

Für G' = 0 und $R' < +\infty$:

$$\alpha = \frac{1}{2} \cdot \sqrt{2 \cdot \sqrt{(R'^2 + 4\pi^2 \cdot f^2 \cdot L'^2) \cdot (4\pi^2 \cdot f^2 \cdot C'^2)} - 8\pi^2 \cdot f^2 \cdot L' \cdot C'}$$

Für R' >> L' und $f \leq f_K$:

$$\alpha = \sqrt{\pi \cdot f \cdot R' \cdot C'}$$

Sowie:

$$\beta = \frac{1}{2} \cdot \sqrt{8\pi^2 \cdot f^2 \cdot L' \cdot C' - 2 \cdot R' \cdot G' + 2 \cdot \sqrt{(R'^2 + 4\pi^2 \cdot f^2 \cdot L'^2) \cdot (G'^2 + 4\pi^2 \cdot f^2 \cdot C'^2)}}$$

Für G'=0 und $R'<+\infty$:

$$\beta = \frac{1}{2} \cdot \sqrt{8\pi^2 \cdot f^2 \cdot L' \cdot C' + 2 \cdot \sqrt{(R'^2 + 4\pi^2 \cdot f^2 \cdot L'^2) \cdot (4\pi^2 \cdot f^2 \cdot C'^2)}}$$

Für R' >> L' und $f \leq f_K$:

$$\beta = \sqrt{\pi \cdot f \cdot R' \cdot C'}$$

Abschließend, zur Information das Dämpfungs-D und Verzerrungsmaß V.

$$D = \frac{1}{2} \cdot \left(\frac{R'}{L'} + \frac{G'}{C'}\right) \qquad V = \frac{1}{2} \cdot \left(\frac{R'}{L'} - \frac{G'}{C'}\right)$$

Für G'=0:

$$D = \frac{R'}{2 \cdot L'} \qquad V = \frac{R'}{2 \cdot L'}$$

Beispielswerte - Fortsetzung:

•					
f[Hz]	$\alpha[m^{-1}]$	$\beta [\mathrm{m}^{-1}]$	f[Hz]	$\alpha [\mathrm{m}^{-1}]$	$\beta [\mathrm{m}^{-1}]$
0,000	0	0	15, 000	381 671	381 671
1,000	98 547	98 547	16,000	394 189	394 189
2,000	139 367	139 367	17,000	406 320	406 320
3,000	170 689	170 689	18,000	418 100	418 100
4,000	197 094	197 094	19,000	429 557	429 557
5,000	220 358	220 358	20,000	440 716	440 716
6,000	241 390	241 390	21,000	451 600	451 600
7,000	260 731	260 731	22,000	462 227	462 227
8,000	278 733	278 733	23,000	472 616	472 616
9,000	295 641	295 641	24, 000	482 780	482 780
10,000	311 633	311 633	25, 000	492 736	492 736
11,000	326 844	326 844	26,000	502 494	502 494
12,000	341 377	341 377	27,000	512 066	512 066
13,000	355 317	355 317	28, 000	521 462	521 462
14, 000	368 730	368 730	28, 624	527 246	527 246

Zur Information, das Dämpfungs- und das Verzerrungsmaß:

$$D = 0,1389151626e27 \cdot 10^{27} \; \; \mathrm{Hz} \qquad \qquad V = 0,1389151626e27 \cdot 10^{27} \; \; \mathrm{Hz}$$

4.4 Berechnungsgrundlagen II - Das PROTEL als hochohmige Struktur

Gegeben ist der Reflexionsfaktor r für die vorliegende koaxiale Struktur an deren Enden.

$$r = \frac{Z_0 - Z_L}{Z_0 + Z_L}$$

• Realanteil von r

$$\operatorname{Re} (r) = \begin{cases} A = 4\pi^2 \cdot f^2 \cdot C'^2 + G'^2 \\ B = \left(4\pi^2 \cdot f^2 \cdot L'^2 + R'^2\right) / \left(4\pi^2 \cdot f^2 \cdot C'^2 + G'^2\right) \\ \\ \frac{Z_0^2 + \sqrt{B}}{Z_0 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{A}} \cdot \sqrt{\sqrt{B} \cdot G'^2 + 4\pi^2 \cdot f^2} \cdot \sqrt{B} \cdot C'^2 + R' \cdot G' + 4\pi^2 \cdot f^2 \cdot L' \cdot C'} + Z_0^2 + \sqrt{B}} \end{cases}$$

Mit G' = 0 und $R' < +\infty$:

$$\operatorname{Re} (r) = \begin{cases} B = \left(4\pi^2 \cdot f^2 \cdot L'^2 + R'^2\right) / \left(4\pi^2 \cdot f^2 \cdot C'^2\right) \\ \frac{Z_0^2 + \sqrt{B}}{Z_0 \cdot \sqrt{2} \cdot \sqrt{\sqrt{B} + \frac{L'}{C'}} + Z_0^2 + \sqrt{B}} \end{cases}$$

Mit R' >> L' und $f \leq f_K$:

$$\operatorname{Re} (r) = \begin{cases} B = R'^2 / \left(4\pi^2 \cdot f^2 \cdot C'^2\right) \\ \\ \frac{Z_0^2 + \sqrt{B}}{Z_0 \cdot \sqrt{2} \cdot \sqrt{\sqrt{B} + \frac{L'}{C'} + Z_0^2 + \sqrt{B}}} \end{cases}$$

 \Rightarrow

$$\mathrm{Re}\ (r) = \frac{Z_0^2 + \frac{R'}{2\pi \cdot f \cdot C'}}{Z_0 \cdot \sqrt{\frac{2 \cdot R'}{2\pi \cdot f \cdot C'} + \frac{L'}{C'}} + Z_0^2 + \frac{R'}{2\pi \cdot f \cdot C'}}$$

Mit $Z^2 = \frac{L'}{C'}$

$$\operatorname{Re} (r) = \frac{Z_0^2 + \frac{R'}{2\pi \cdot f \cdot C'}}{Z_0 \cdot \sqrt{2 \cdot \frac{R'}{2\pi \cdot f \cdot C'} + Z^2} + Z_0^2 + \frac{R'}{2\pi \cdot f \cdot C'}}$$

Es gilt:

$$\alpha^2 = \pi \cdot f \cdot R' \cdot C'$$

 \Rightarrow

$$\frac{\alpha^2}{R'} = \pi \cdot f \cdot C'$$

Ergibt letztendlich einen Realanteil von r

Re
$$(r) = \frac{2\alpha^2 \cdot Z_0^2 + R'^2}{2\alpha \cdot Z_0 \cdot \sqrt{R'^2 + \alpha^2 \cdot Z^2} + 2\alpha^2 \cdot Z_0^2 + R'^2}$$

ullet Imaginäranteil von r

$$\operatorname{Im} (r) = \begin{cases} A = 4\pi^2 \cdot f^2 \cdot C'^2 + G'^2 \\ B = \left(4\pi^2 \cdot f^2 \cdot L'^2 + R'^2\right) / \left(4\pi^2 \cdot f^2 \cdot C'^2 + G'^2\right) \\ \\ \frac{Z_0 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{A}} \cdot \sqrt{\sqrt{B} \cdot G'^2 + 4\pi^2 \cdot f^2 \cdot \sqrt{B} \cdot C'^2 - R' \cdot G' - 4\pi^2 \cdot f^2 \cdot L' \cdot C'}}{Z_0 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{A}} \cdot \sqrt{\sqrt{B} \cdot G'^2 + 4\pi^2 \cdot f^2 \cdot \sqrt{B} \cdot C'^2 + R' \cdot G' + 4\pi^2 \cdot f^2 \cdot L' \cdot C'} + Z_0^2 + \sqrt{A}} \end{cases}$$

Mit:

$$\text{Re } (r) = \frac{Z_0^2 + \sqrt{B}}{Z_0 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{A}} \cdot \sqrt{\sqrt{B} \cdot G'^2 + 4\pi^2 \cdot f^2 \cdot \sqrt{B} \cdot C'^2 + R' \cdot G' + 4\pi^2 \cdot f^2 \cdot L' \cdot C'} + Z_0^2 + \sqrt{B}}$$

$$\Rightarrow$$

$$\frac{Z_0^2 + \sqrt{B}}{\text{Re } (r)} = Z_0 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{A}} \cdot \sqrt{\sqrt{B} \cdot G'^2 + 4\pi^2 \cdot f^2 \cdot \sqrt{B} \cdot C'^2 + R' \cdot G' + 4\pi^2 \cdot f^2 \cdot L' \cdot C'} + Z_0^2 + \sqrt{B}}$$

Folgt:

$$\operatorname{Im} (r) = \begin{cases} A = 4\pi^2 \cdot f^2 \cdot C'^2 + G'^2 \\ B = \left(4\pi^2 \cdot f^2 \cdot L'^2 + R'^2\right) / \left(4\pi^2 \cdot f^2 \cdot C'^2 + G'^2\right) \\ \\ \operatorname{Re} (r) \cdot \frac{Z_0 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{A}} \cdot \sqrt{\sqrt{B} \cdot G'^2 + 4\pi^2 \cdot f^2 \cdot \sqrt{B} \cdot C'^2 - R' \cdot G' - 4\pi^2 \cdot f^2 \cdot L' \cdot C'}}{Z_0^2 + \sqrt{B}} \end{cases}$$

Mit G'=0 und $R'<+\infty$

$$\operatorname{Im} (r) = \begin{cases} A = 4\pi^2 \cdot f^2 \cdot C'^2 \\ B = \left(4\pi^2 \cdot f^2 \cdot L'^2 + R'^2\right) / \left(4\pi^2 \cdot f^2 \cdot C'^2\right) \\ \\ \operatorname{Re} (r) \cdot \frac{Z_0 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{A}} \cdot \sqrt{4\pi^2 \cdot f^2 \cdot \sqrt{B} \cdot C'^2 - 4\pi^2 \cdot f^2 \cdot L' \cdot C'}}{Z_0^2 + \sqrt{B}} \end{cases}$$

 $\operatorname{Mit} R' >> L' \text{ und } f \leq f_K$

Im
$$(r) = \operatorname{Re} (r) \cdot \frac{Z_0 \cdot \sqrt{\frac{R'}{\pi \cdot f \cdot C'}}}{Z_0^2 + \frac{R'}{2\pi \cdot f \cdot C}}$$

Es gilt:

$$\alpha^2 = \pi \cdot f \cdot R' \cdot C'$$

 \Rightarrow

$$\frac{\alpha^2}{R'} = \pi \cdot f \cdot C'$$

 \Rightarrow

Im
$$(r) = \operatorname{Re}(r) \cdot \frac{Z_0 \cdot \frac{R'}{\alpha}}{Z_0^2 + \frac{R'^2}{2\alpha^2}}$$

 \Rightarrow

Im
$$(r) = \operatorname{Re} (r) \cdot \frac{2\alpha \cdot Z_0 \cdot R'}{2\alpha^2 \cdot Z_0^2 + R'^2}$$

Der Wert für Re (r) wird substituiert, dass Ergebnis liefert den Imaginäranteil von r:

$${\rm Im} \ (r) = \frac{2\alpha \cdot Z_0 \cdot R'}{2\alpha \cdot Z_0 \cdot \sqrt{R'^2 + \alpha^2 \cdot Z^2} + 2\alpha^2 \cdot Z_0^2 + R'^2}$$

• Weitere Vereinfachungen

Ausgehend von:

Re
$$(r) = \frac{2\alpha^2 \cdot Z_0^2 + R'^2}{2\alpha \cdot Z_0 \cdot \sqrt{R'^2 + \alpha^2 \cdot Z^2} + 2\alpha^2 \cdot Z_0^2 + R'^2}$$

Im
$$(r) = \frac{2\alpha \cdot Z_0 \cdot R'}{2\alpha \cdot Z_0 \cdot \sqrt{R'^2 + \alpha^2 \cdot Z^2} + 2\alpha^2 \cdot Z_0^2 + R'^2}$$

Hier gilt $R' >> \{\alpha; Z_0; Z\}$, daher:

Re
$$(r) = \frac{R'^2}{2\alpha \cdot Z_0 \cdot R' + R'^2}$$
 Im $(r) = \frac{R'}{2\alpha \cdot Z_0 \cdot R' + R'^2}$

In der Endkonsequenz aller Vereinfachungen ergibt sich für den Imaginär- und Realanteil von r:

Re
$$(r) = \frac{R'}{R'} = 1$$
 Im $(r) = \frac{1}{R'} = 0$

\bullet Betrag und Phase von r

$$|r| = -\sqrt{\operatorname{Re}(r)^2 + \operatorname{Im}(r)^2} \cdot \operatorname{csgn} C = -\operatorname{csgn} C$$

Mit C und allen bekannten Vereinfachungen dafür:

$$C = 2\pi \cdot f \cdot L' \cdot G' - 2\pi \cdot f \cdot R' \cdot C' - j \cdot R' \cdot G' - j \cdot 4\pi^2 \cdot f^2 \cdot L' \cdot C'$$

$$C = -2\pi \cdot f \cdot (R' + j \cdot 2\pi \cdot f \cdot L') \cdot C'$$

 $C = -2\pi \cdot f \cdot R' \cdot C'$

$$C = -2 \cdot \alpha^2$$

Hier gilt da $2\alpha^2 > 0$:

 \Rightarrow

 \Rightarrow

$$-\operatorname{csgn}\left(-2\alpha^2\right) = +1$$

Daraus folgt für den Betrag von r:

$$|r| = 1$$

Das Argument des komplexen Reflexionsfaktors.

$$\varphi = \tan^{-1} \frac{\operatorname{Im} (r)}{\operatorname{Re} (r)} = 0$$

An den Enden des PROTELs (diese sind im Leerlauf) kommt es zu einer Totalreflexion mit einer 0°- Phasenverschiebung der Spannung. Es bildet sich ein Resonator heraus, in dem die Spannungen weiter geleitet werden, die Ströme jedoch Null sind.

• Das PROTEL als Resonator

Die Resonanzbedingung ist gegeben mit $n \in N$ und n > 0:

$$n \cdot \lambda = n \cdot \frac{c}{f} = 2 \cdot l$$

Wobei l die Länge des PROTELs darstellt.

Vorliegendes System ist abgeschlossen. Eine Signalinjektion bzw. Ejektion ist nicht möglich. Ein Widerstand Z_E müsste so gestaltet sein, dass der Resonator nicht in seiner Funktion gestört wird, jedoch Signale beschränkt in die koaxiale Struktur hinein oder hinaus lässt. An der Stelle des Signaltransfers gilt für den vorliegenden Resonator:

$$Z_E = Z_L \cdot \coth(\gamma \cdot l)$$

Da Z_E gleichzeitig an der Stelle eines Signaleintritts wie auch Signalaustritts steht, gilt als Nebenbedingung:

$$\frac{Z_E - Z_L}{Z_E + Z_L} = r - \eta$$

Wobei $\eta \to 0$ ist mit den Bedingungen $\eta \in R$ und $2 \ge \eta \ge 0$. Beide Gleichungen zusammengefasst ergibt:

$$\frac{Z_E}{Z_L} = \coth\left(\gamma \cdot l\right) = \frac{1 + r - \eta}{1 - r - \eta}$$

Für l kann die Bedingung $l=c/f\cdot n/2$ eingesetzt werden unter $n\in N$ und n>0. Die Fortpflanzungskonstante $\gamma=\alpha+j\cdot\beta$ wird ersetzt hier mit $\alpha=\beta=\sqrt{\pi\cdot f\cdot R'\cdot C'}$. Ein Umstellen nach η folgt.

$$\eta = \begin{cases} A = \coth\left((1+j) \cdot \sqrt{\frac{\pi}{4} \cdot \frac{R' \cdot C'}{f}} \cdot c \cdot n\right) \\ \\ \frac{1+r}{1-A} - \frac{A}{1-A} \cdot (1-r) \end{cases}$$

Im vorliegenden Fall ist r = 1. Dadurch vereinfacht sich die Berechnungsgrundlage.

$$\eta = \frac{2}{1 - \coth\left((1+j) \cdot \sqrt{\frac{\pi}{4} \cdot \frac{R' \cdot C'}{f}} \cdot c \cdot n\right)}$$

Der Wert für η liegt komplex vor. Eine Möglichkeit den imaginären Anteil gegen Null gehen zu lassen wäre nur mit n=0 oder $f\to\infty$ realisierbar. Beide Optionen sind durch ihre Randbedingungen ausgeschlossen. Wobei unter allen Umständen gleichzeitig der Realanteil selbst verschwindet. So ist im Rahmen der Bedingungen gegeben:

$$\eta = \lim_{z \to +0} \frac{2}{1 - \coth z} = 0$$

Was letztendlich bedeutet, dass Z_E nach ∞ gehen muss. Das PROTEL besitzt weiterhin eine geschlossene Struktur.

$$Z_E = Z_L \cdot \coth(\gamma \cdot l) = Z_L \cdot \lim_{\eta \to 0} \frac{1 + r - \eta}{1 - r - \eta}$$

 \Rightarrow

$$Z_E = Z_L \cdot \coth\left(\gamma \cdot l\right) = Z_L \cdot \lim_{r \to 1} \frac{1+r}{1-r} = \infty$$

• Das PROTEL als Schwingkreis

Gegeben ist ein PROTEL als Schwingkreis mit dem Dämpfungsmaß D und die freie Schwingfrequenz ω_0 in Abhängigkeit von der Länge l der koaxialen Struktur.

$$D = \frac{R'}{2 \cdot L'} \qquad \omega_0 \cdot l = \frac{1}{\sqrt{L' \cdot C'}}$$

Über diese beiden Berechnungsgrundlagen sind vier Fälle ableitbar.

• Ungedämpft - Fall I:

$$0 = D < \omega_0 = \frac{1}{l_I \cdot \sqrt{L' \cdot C'}}$$

 \Rightarrow

$$0 < l_I = \frac{1}{\omega_0 \cdot \sqrt{L' \cdot C'}}$$

Das PROTEL schwingt mit der Kreisfrequenz ω_I (realer Ausdruck).

$$\omega^2=\omega_0^2-D^2=\omega_0^2$$

 \Rightarrow

$$\omega_I = \frac{1}{l_I \cdot \sqrt{L' \cdot C'}}$$

• Schwache Dämpfung - Fall II:

$$\frac{R'}{2 \cdot L'} = D < \omega_0 = \frac{1}{l_{II} \cdot \sqrt{L' \cdot C'}}$$

 \Rightarrow

$$l_{II} < \frac{2}{R'} \cdot \sqrt{\frac{L'}{C'}} = 2 \cdot \frac{Z}{R'}$$

Das PROTEL schwingt mit der Kreisfrequenz ω_{II} (realer Ausdruck).

$$\omega^2 = \omega_0^2 - D^2$$

 \Rightarrow

$$\omega_{II} = \sqrt{\frac{1}{l_{II}^2 \cdot L' \cdot C'} - \frac{R'^2}{4 \cdot L'^2}} = \frac{1}{2 \cdot l_{II} \cdot L'} \cdot \sqrt{4 \cdot Z^2 - l_{II}^2 \cdot R'^2}$$

• Kritische Dämpfung (Aperiodischer Grenzfall) - Fall III:

$$\frac{R'}{2 \cdot L'} = D = \omega_0 = \frac{1}{l_{III} \cdot \sqrt{L' \cdot C'}}$$

 \Rightarrow

$$l_{III} = \frac{2}{R'} \cdot \sqrt{\frac{L'}{C'}} = 2 \cdot \frac{Z}{R'}$$

Das PROTEL schwingt mit der Kreisfrequenz ω_{III} (realer Ausdruck).

$$\omega^2 = \omega_0^2 - \omega_0^2 = D^2 - D^2$$

 \Rightarrow

$$\omega_{III} = 0$$

• Starke Dämpfung (Kriechfall) - Fall IV:

$$\frac{R'}{2 \cdot L'} = D > \omega_0 = \frac{1}{l_{IV} \cdot \sqrt{L' \cdot C'}}$$

 \Rightarrow

$$l_{IV} > \frac{2}{R'} \cdot \sqrt{\frac{L'}{C'}} = 2 \cdot \frac{Z}{R'}$$

Das PROTEL schwingt mit der Kreisfrequenz ω_{IV} (komplexer Ausdruck).

$$\omega^2 = \omega_0^2 - D^2$$

 \Rightarrow

$$\omega_{IV} = \sqrt{\frac{1}{l_{IV}^2 \cdot L' \cdot C'} - \frac{R'^2}{4 \cdot L'^2}} = \frac{1}{2 \cdot l_{IV} \cdot L'} \cdot \sqrt{4 \cdot Z^2 - l_{IV}^2 \cdot R'^2}$$

Zusammengefasst kann ein PROTEL nur dann schwingen, wenn die Bedingung $4\cdot Z^2 - l_{II}^2\cdot R'^2 > 0$ erfüllt ist.

Da R' im Allgemeinen große Werte liefert, kann davon ausgegangen werden, dass grundsätzlich der Fall IV - Kriechfall vorliegt.

4.5 Berechnungsgrundlagen III - Das PROTEL als Oszillator

Gegeben ist eine energetische Anregung des PROTELs. Diese wird abgebaut über den bereits beschriebenen Kriechfall.

Grundlage des Abbaus, der zeitlichen Spannungsänderung innerhalb des Resonators/PROTEL ist:

$$U(t) = e^{-D \cdot t} \cdot \left(C_1 \cdot e^{+\omega \cdot t} + C_2 \cdot e^{-\omega \cdot t} \right)$$

Es sind Randbedingungen bekannt, diese werden genutzt.

$$U(0) = U_0$$

 \Rightarrow

$$U_0 = C_1 + C_2 \qquad \to \qquad C_2 = U_0 - C_1$$

 \Rightarrow

$$U(t) = e^{-D \cdot t} \cdot \left(C_1 \cdot \left(e^{+\omega \cdot t} - e^{-\omega \cdot t} \right) + U_0 \cdot e^{-\omega \cdot t} \right)$$

Die Ladung:

$$Q\left(t\right) = C' \cdot l \cdot U\left(t\right) = C' \cdot l \cdot e^{-D \cdot t} \cdot \left(C_1 \cdot \left(e^{+\omega \cdot t} - e^{-\omega \cdot t}\right) + U_0 \cdot e^{-\omega \cdot t}\right)$$

Der Strom:

$$I\left(t\right) = -\frac{d}{dt}Q\left(t\right) = -C' \cdot l \cdot \frac{d}{dt}U\left(t\right) = -C' \cdot l \cdot \frac{d}{dt}e^{-D \cdot t} \cdot \left(C_1 \cdot \left(e^{+\omega \cdot t} - e^{-\omega \cdot t}\right) + U_0 \cdot e^{-\omega \cdot t}\right)$$

 \Rightarrow

$$I(t) = C' \cdot l \cdot e^{-D \cdot t} \cdot e^{-\omega \cdot t} \cdot \left(C_1 \cdot (D - \omega) \cdot e^{2 \cdot \omega \cdot t} + (D + \omega) \cdot (U_0 - C_1) \right)$$

Es sind Randbedingungen bekannt, diese werden genutzt.

$$I\left(0\right) = 0$$

 \Rightarrow

$$0 = (D + \omega) \cdot U_0 - 2 \cdot \omega \cdot C_1 \qquad \to \qquad C_1 = \frac{D + \omega}{2 \cdot \omega} \cdot U_0$$

Damit sind alle drei Kennlinien definiert.

$$U(t) = \frac{U_0}{2 \cdot \omega} \cdot e^{-D \cdot t} \cdot \left((\omega + D) \cdot e^{+\omega \cdot t} + (\omega - D) \cdot e^{-\omega \cdot t} \right)$$

 \Rightarrow

$$Q(t) = \frac{U_0 \cdot C \cdot l}{2 \cdot \omega} \cdot e^{-D \cdot t} \cdot \left((\omega + D) \cdot e^{+\omega \cdot t} + (\omega - D) \cdot e^{-\omega \cdot t} \right)$$

 \Rightarrow

$$I\left(t\right) = -\frac{U_{0} \cdot C' \cdot l}{2 \cdot \omega} \cdot e^{-D \cdot t} \cdot \left(\omega^{2} - D^{2}\right) \cdot \left(e^{+\omega \cdot t} - e^{-\omega \cdot t}\right)$$

Zusätzlich kann der Widerstand R(t) ermittelt werden

$$R\left(t\right) = \frac{\left(\omega + D\right) \cdot e^{+\omega \cdot t} + \left(\omega - D\right) \cdot e^{-\omega \cdot t}}{C' \cdot l \cdot \left(\omega^{2} - D^{2}\right) \cdot \left(e^{-\omega \cdot t} - e^{+\omega \cdot t}\right)}$$

 \Rightarrow

$$R(t \to \infty) = \frac{1}{C' \cdot l \cdot (D - \omega)}$$

Es sind Vereinfachungen möglich da gilt $D >> \omega$:

$$U\left(t\right) = \frac{U_0 \cdot D}{2 \cdot \omega} \cdot e^{-D \cdot t} \cdot \left(e^{+\omega \cdot t} - e^{-\omega \cdot t}\right)$$

 \Rightarrow

$$Q\left(t\right) = \frac{U_{0} \cdot C \cdot l \cdot D}{2 \cdot \omega} \cdot e^{-D \cdot t} \cdot \left(e^{+\omega \cdot t} - e^{-\omega \cdot t}\right)$$

 \Rightarrow

$$I(t) = \frac{U_0 \cdot C' \cdot l \cdot D^2}{2 \cdot \omega} \cdot e^{-D \cdot t} \cdot \left(e^{+\omega \cdot t} - e^{-\omega \cdot t}\right)$$

 \Rightarrow

$$R\left(t\right)=R\left(t\rightarrow\infty\right)=\frac{1}{C'\cdot l\cdot D}=\frac{2\cdot Z^{2}}{l\cdot R'}$$

Der stationäre Wert für $R(t \to \infty)$ stellt sich bereits nach sehr kurzer Zeit ein. Der Wert $R(t \to \infty)$ soll praktisch erreicht sein, wenn gilt:

$$R(t) = (1 + \eta) \cdot R(t \to \infty)$$

Wobei $\eta^+ \to 0$.

$$\frac{(\omega+D)\cdot e^{+\omega\cdot t}+(\omega-D)\cdot e^{-\omega\cdot t}}{(\omega+D)\cdot (e^{+\omega\cdot t}-e^{-\omega\cdot t})}=1+\eta$$

 \Rightarrow

$$\frac{2\omega \cdot e^{-\omega \cdot t}}{(\omega + D) \cdot (e^{+\omega \cdot t} - e^{-\omega \cdot t})} = \eta$$

 \Rightarrow

$$t_{\eta} = \frac{1}{2\omega} \cdot \ln \left(\frac{2\omega}{(\omega + D) \cdot \eta} + 1 \right) \approx \frac{1}{2\omega} \cdot \ln \left(2 \cdot \frac{\omega}{D \cdot \eta} + 1 \right)$$

Danach kann mit $R(t \to \infty)$ weiter gerechnet werden. Das PROTEL ist niederohmig geworden.

Das PROTEL geht vom hochohmigen zum leitenden Zustand über und kann nun Schwingungen erzeugen, welche definiert sind mit:

$$\omega = \sqrt{\omega_0^2 - D^2}$$

 \Rightarrow

$$\omega = \sqrt{\frac{1}{l^2 \cdot L' \cdot C'} - \frac{R \left(t \to \infty\right)^2}{4 \cdot L'^2 \cdot l^2}}$$

 \Rightarrow

$$\omega = \frac{1}{l \cdot \sqrt{L' \cdot C'}} \cdot \sqrt{1 - \frac{Z^2}{l^2 \cdot R'^2}}$$

 \Rightarrow

$$\omega = \omega_0 \cdot \sqrt{1 - \frac{Z^2}{l^2 \cdot R'^2}}$$

Für ein sicheres Schwingen muss gelten:

$$1 - \frac{Z^2}{l^2 \cdot R'^2} > 0$$

 \Rightarrow

$$l^2 \cdot R'^2 > Z^2$$

Was für ein niederohmiges PROTEL praktisch immer erfüllt ist. Eine Abschätzung der Länge l folgt.

$$\frac{1}{l \cdot \sqrt{l' \cdot C'}} \cdot \sqrt{1 - \frac{Z^2}{l^2 \cdot R'^2}} \le \omega_K$$

 \Rightarrow

$$0 \leq l^4 \cdot R'^2 \cdot L' \cdot C' \cdot \omega_K^2 - l^2 \cdot R'^2 + Z^2$$

Eine Vereinfachung ist auf der Grundlage R'>>Z möglich. So kann die Inhomogenität Z^2 weggelassen werden.

$$0 < l^4 \cdot R'^2 \cdot L' \cdot C' \cdot \omega_K^2 - l^2 \cdot R'^2$$

 \Rightarrow

$$l \ge \frac{1}{\omega_K \cdot \sqrt{L' \cdot C'}}$$

Für ω_K ist eine Berechnungsgrundlage bekannt.

$$f_K = \frac{c}{\pi \cdot (r_e + r_p)}$$

 \Rightarrow

$$l \ge \frac{r_e + r_p}{2 \cdot c \cdot \sqrt{L' \cdot C'}}$$

Weiterhin gilt:

$$c = \frac{1}{\sqrt{\mu_0 \cdot \varepsilon_0}} \qquad \sqrt{L' \cdot C'} = \sqrt{\mu_0 \cdot \varepsilon_0}$$

 \Rightarrow

$$l \geq \frac{r_e + r_p}{2}$$

Ist offensichtlich, dass $r_p >> r_e$ gewährleistet ist, dann ergibt sich letztendlich:

$$l \ge \frac{r_p}{2}$$

Während des Schwingens ändert sich der Reflexionsfaktor r. Dazu wird $Z_{t\to\infty}$ benötigt.

$$Z_{t\to\infty} = \sqrt{\frac{R\left(t\to\infty\right)\cdot l\cdot R'}{2}}$$

 $R\left(t \to \infty
ight)$ kann durch das Dämpfungsmaß ersetzt werden.

$$R(t \to \infty) = \frac{1}{C' \cdot l \cdot D}$$

 \Rightarrow

$$Z_{t\to\infty} = \sqrt{\frac{R'}{2\cdot C'\cdot D}}$$

Wobei die ursprüngliche Berechnungsgrundlage von D ebenfalls genutzt wird.

$$D = \frac{R'}{2 \cdot L'}$$

 \Rightarrow

$$Z_{t\to\infty} = \sqrt{\frac{L'}{C'}} = \frac{Z_0}{2\pi} \cdot \ln \frac{r_p}{r_e} = Z$$

Damit ist r bestimmt.

$$r_{t\to\infty} = \frac{Z_0 - Z_{t\to\infty}}{Z_0 + Z_{t\to\infty}} = \frac{2\pi - \ln\frac{r_p}{r_e}}{2\pi + \ln\frac{r_p}{r_e}}$$

Das schwingende PROTEL gibt ω an die Umgebung weiter. Ideal wäre für die verlustlose Abgabe ein:

 $2\pi - \ln \frac{r_p}{r_e} = 0$

 \Rightarrow

$$\frac{r_p}{r_e} = \frac{E_{v;p} \cdot v_{0;e}}{E_{v:e} \cdot v_{0;p}} = e^{+2\pi} \approx 535, 5$$

Beispielswerte - Fortsetzung:

Minimale Länge des BeispielPROTELs:

$$l_{\mathrm{MIN}} = 1666875~\mathrm{m} \approx 1667~\mathrm{km}$$

Widerstand - niederohmiger Zustand:

$$R'(t \to \infty) = \frac{R(t \to \infty)}{l} = \frac{0,69 \dots 10^{-21}}{l} = 0,414 \dots 10^{-27} \Omega m^{-1}$$

Frequenzen bei l_{MIN} :

$$\omega_0 = 179, 8 \dots \; \operatorname{Hz} = \omega_K \qquad \qquad \omega = 179, 8 \dots \; \operatorname{Hz} \approx \omega_K$$

Zeitdauer t_{η} bei $\eta = 1 \cdot 10^{-20}$:

$$t_{\eta} = 0,72 \cdot 10^{-6} \text{ s} \equiv 0,72 \ \mu\text{s} \equiv 720 \ \text{ns}$$

Reflexionsfaktor r - niederohmiger Zustand:

$$r = -0.177$$

Verhältnis des Protonen- zu Elektronenradius:

$$\frac{r_p}{r_e} = 8000 < e^{+2\pi} \approx 535, 5$$

Das PROTEL als Oszillator ist gedämpft über D ($t \to \infty$). Das bewirkt eine Verbreiterung der Oszillatorfrequenz um $\Delta \omega$. Die abgestrahlte Intensität I (ω) des Oszillators folgt dem Lorentz-Profil.

$$I(\omega) = \frac{I_0}{\pi} \cdot \frac{\frac{D(t \to \infty)}{2}}{(\omega - \omega_0)^2 + \frac{D(t \to \infty)^2}{4}}$$

Die maximale Intensität I_{MAX} liegt an der Stelle $\omega = \omega_0$.

$$I_{MAX} = I(\omega_0) = \frac{I_0}{\pi} \cdot \frac{2}{D(t \to \infty)}$$

Damit ist die Halbwertsbreite $\Delta\omega$ definiert.

$$\frac{I_0}{\pi} \cdot \frac{1}{D(t \to \infty)} = \frac{I_0}{\pi} \cdot \frac{\frac{D(t \to \infty)}{2}}{(\omega - \omega_0)^2 + \frac{D(t \to \infty)^2}{4}}$$

 \Rightarrow

$$\omega_1 = \omega_0 + \frac{D(t \to \infty)}{2}$$
 $\qquad \qquad \omega_2 = \omega_0 - \frac{D(t \to \infty)}{2}$

 \Rightarrow

$$\Delta\omega = \omega_1 - \omega_2 = D\left(t \to \infty\right)$$

Damit ist die Breite $\Delta \omega$ bekannt.

$$\Delta\omega = \frac{R'\left(t \to \infty\right)}{2 \cdot L'}$$

Äquivalent dazu:

$$\Delta\omega = \frac{\omega_0^2}{2 \cdot D}$$

 \Rightarrow

$$\frac{\omega_0^2}{\Delta\omega} = 2 \cdot D = \frac{R'}{L'} = Q \cdot \omega_0$$

Wobei ${\cal Q}$ den Gütefaktor des PROTELs darstellt.

$$Q = \frac{R'}{\omega_0 \cdot L'} = \frac{2}{\omega_0} \cdot D = \frac{\omega_0}{\Delta \omega}$$

Beispielswerte - Fortsetzung:

Bandbreite des schwingenden PROTELs:

$$\Delta\omega = \frac{\omega_0^2}{2 \cdot D} = \frac{179, 57^2}{2 \cdot 0, 14 \cdot 10^{27}}$$

$$\Rightarrow \qquad \Delta\omega = \frac{R(t \to \infty)}{2 \cdot L} = \frac{0, 414 \cdot 10^{-27}}{2 \cdot 0, 18 \cdot 10^{-5}}$$

$$\Rightarrow \qquad \Delta\omega = 0, 116 \cdot 10^{-21} \text{Hz}$$
 Güte des Oszillators:
$$Q = \frac{R'}{\omega_0 \cdot L'} = \frac{0, 5 \cdot 10^{+21}}{179, 57 \cdot 0, 18 \cdot 10^{-5}}$$

$$\Rightarrow \qquad Q = \frac{2}{\omega_0} \cdot D = \frac{2}{179, 57} \cdot 0, 139 \cdot 10^{+27}$$

$$\Rightarrow \qquad Q = \frac{\omega_0}{\Delta\omega} = \frac{179, 57}{0, 115 \cdot 10^{-21}}$$

$$\Rightarrow \qquad Q = 1, 55 \dots \cdot 10^{+24}$$

5 Anhang

5.1 Zusammenfassung der gewonnenen Berechnungsgrundlagen

• Frequenzen ⁵

Gyrofrequenz des Elektrons

$$f_{g;e} = \frac{v_{r;e}}{2\pi \cdot r_e}$$

Gyrofrequenz des Protons

$$f_{g;p} = \frac{v_{r;p}}{2\pi \cdot r_p}$$

Grenzfrequenz des PROTELs

$$f_K = \frac{c}{\pi \cdot (r_e + r_p)}$$

• Wellenwiderstände

Wellenwiderstand des Vakuums

$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 376,73 \ \Omega$$

Wellenwiderstand des verlustlosen PROTELs

$$Z = \sqrt{\frac{L'}{C'}} = \frac{Z_0}{2\pi} \cdot \ln \frac{r_p}{r_e}$$

Wellenwiderstand des verlustbehafteten PROTELs

$$Z_L = \sqrt{-j \cdot \frac{R'}{\omega \cdot C'}} = Z \cdot \sqrt{-2j \cdot \frac{D}{\omega}} = \frac{\alpha}{\omega \cdot C'} \cdot (1-j)$$

Real- und Imaginäranteil von Z_L

Re
$$(Z_L) = \frac{\alpha}{\omega \cdot C'}$$
 Im $(Z_L) = \frac{\alpha}{\omega \cdot C'}$

Phase von Z_L

$$\varphi\left(Z_{L}\right) = \tan^{-1} = \tan^{-1} \frac{\operatorname{Im}\left(Z_{L}\right)}{\operatorname{Re}\left(Z_{L}\right)} = \frac{\pi}{4} \equiv 45^{\circ}$$

Betrag von Z_L

$$|Z_L| = \sqrt{\operatorname{Re}(Z_L)^2 + \operatorname{Im}(Z_L)^2} = \sqrt{2} \cdot \frac{\alpha}{\omega \cdot C'} = Z \cdot \sqrt{2 \cdot \frac{D}{\omega}} = Z_L \cdot \sqrt{j}$$

• Leitungsbeläge

Induktivitätsbelag

$$L' = \frac{\mu_0}{2\pi} \cdot \ln \frac{r_p}{r_e}$$

Kapazitätsbelag

$$C' = 2\pi \cdot \varepsilon_0 \cdot \ln^{-1} \frac{r_p}{r_e}$$

Widerstandsbelag

$$R' = \frac{1}{2 \cdot e^2} \left(\frac{E_{v;p}}{v_{0;p}} + \frac{E_{v;e}}{v_{0;e}} \right)$$

Leitwertbelag

$$G' = \omega \cdot C' \cdot \tan(\omega \cdot R' \cdot C') = \omega \cdot C' \cdot \tan(2 \cdot \beta^2)$$

⁵Zugeschnitten auf die Bedingungen des vorliegendes Themas

• Leitungskonstanten

Dämpfungskonstante

$$\alpha^2 = \frac{\omega}{2} \cdot R' \cdot C'$$

Phasenkonstante

$$\beta^2 = \frac{\omega}{2} \cdot R' \cdot C'$$

• Leitungsmaße

Dämpfungsmaß

$$D = \frac{1}{2} \cdot \frac{R'}{L'}$$

Verzerrungsmaß

$$V = \frac{1}{2} \cdot \frac{R'}{L'}$$

\bullet Reflexionsfaktor r - hochohmiger Zustand

$$r = \frac{Z_0 - Z_L}{Z_0 + Z_L}$$

Realanteil von r innerhalb der Vereinfachungskaskade

$${\rm Re}\ (r) = \frac{2\alpha^2 \cdot Z_0^2 + R'^2}{2\alpha \cdot Z_0 \cdot \sqrt{R'^2 + \alpha^2 \cdot Z^2} + 2\alpha^2 \cdot Z_0^2 + R'^2}$$

 \Rightarrow

$$Re (r) = \frac{R'^2}{2\alpha \cdot Z_0 \cdot R' + R'^2}$$

 \Rightarrow

Re
$$(r) = 1$$

Imaginäranteil von r innerhalb der Vereinfachungskaskade

Im
$$(r) = \frac{2\alpha \cdot Z_0 \cdot R'}{2\alpha \cdot Z_0 \cdot \sqrt{R'^2 + \alpha^2 \cdot Z^2} + 2\alpha^2 \cdot Z_0^2 + R'^2}$$

 \Rightarrow

$$\operatorname{Im} (r) = \frac{R'}{2\alpha \cdot Z_0 \cdot R' + R'^2}$$

 \Rightarrow

$$\operatorname{Im} (r) = 0$$

\bullet Reflexionsfaktor r - niederohmiger Zustand

$$r_{t\to\infty} = \frac{Z_0 - Z_{t\to\infty}}{Z_0 + Z_{t\to\infty}} = \frac{2\pi - \ln\frac{r_p}{r_e}}{2\pi + \ln\frac{r_p}{r_e}}$$

Mit dem Optima r = 0 bei:

$$\frac{r_p}{r_c} = e^{+2\pi} \approx 535, 5$$

ullet Widerstandsbelag $R'\left(t ightarrow\infty ight)$ im niederohmigen Zustand

$$R'\left(t\rightarrow\infty\right)=\frac{R\left(t\rightarrow\infty\right)}{l}=\frac{1}{l^{2}\cdot C'\cdot D}=\frac{2\cdot Z^{2}}{l^{2}\cdot R'}$$

• Oszillationsfrequenz des niederohmigen PROTELs

$$\omega = \underbrace{\frac{1}{1 \cdot \sqrt{L' \cdot C'}}}_{\omega_0} \cdot \sqrt{1 - \frac{Z^2}{l^2 \cdot R'^2}} = \omega_0 \cdot \sqrt{1 - \frac{1}{2} \cdot \frac{R' (t \to \infty)}{R'}} \approx \omega_0$$

• Bandbreite der Oszillatorfrequenz

$$\Delta \omega = \frac{\omega_0^2}{2 \cdot D} = \frac{R' \left(t \to \infty \right)}{2 \cdot L'}$$

• Mindestlänge eines PROTELs welches schwingungsfähig sein soll

$$l_{\mathrm{Min}} = \frac{1}{2\pi \cdot f_K \cdot \sqrt{L' \cdot C'}} = \frac{r_e + r_p}{2}$$

• Übergangszeit vom hochohmigen zum niederohmigen Zustand des PROTELs

$$t_{\eta} = \frac{1}{2\omega} \cdot \ln\left(\frac{2\omega}{(\omega + D) \cdot \eta} + 1\right) \approx \frac{1}{2\omega} \cdot \ln\left(2 \cdot \frac{\omega}{D \cdot \eta} + 1\right)$$

5.2 Literaturnachweis

[1]

Höhere Mathematik

Wilhelm Göhler

10. Auflage 1987, Verlag Harri Deutsch - Thun + Frankfurt/ Main

ISBN 3 - 8171 - 1018 - 9

[2]

Mathematik für Ingenieur- und Fachschulen

Autorenkollektiv

10. Auflage 1989, Band 1 - 2, Fachbuchverlag Leipzig

ISBN 3 - 343 - 00053 - 1 (Band 1)

ISBN 3 - 343 - 00058 - 8 (Band 2)

[3]

Differentialgeometrie

Alfred Gray

1994, Spektrum Verlag GmbH

ISBN 3 - 86025 - 141 - 4

[4]

Elektromagnetische Leitungsvorgänge

Keine weiteren Angaben

[5]

Formeln für Elektroniker

Autorenkollektiv

6. Auflage 1986, Verlag Europalehrmittel GmbH & Co.

ISBN 3 - 8085 - 3336 - 6

[6]

Der Dipol in Theorie und Praxis

Karl H. Hille

2. Auflage 1998, Theuberger Verlag GmbH Berlin

ISBN 3 - 910159 - 06 - 0

[7]

Ionosphäre und Wellenausbreitung

Gerd Klawitter

2. neubearbeitete Auflage 1993, Siebel Verlag Meckenheim

ISBN 3 - 922221 - 65 - 3

[8]

Physische Geographie

Autorenkollektiv

13. Auflage 1992, Schroedel Schulbuchverlag GmbH Hannover

ISBN 3 - 507 - 00830

[9]

Rundfunk-, Fernseh-, Tonspeichertechnik

Liebscher

2. bearbeitete Auflage 1983, Verlag Technik Berlin

ISBN ohne

[10]

Kartenkunde

Autorenkollektiv

1. Auflage 1983, Brockhausverlag Leipzig

ISBN ohne

5.3 Impressum

- Hardware, welche am Anfang zur Verfügung stand.
- Hardware: 486 SX 25 als Terminal(e) im Netzwerk
- Software: MS- DOS 5.0 + diverse Systemerweiterungen, Windows 4. 0, Norton, Novell
- Anwendungen: Word Textverarbeitung, Paint Grafiken, Matheass 7.0 Grafiken, Funktionsplotter Grafiken
- Druck; Epson Stylus 300 im Netzwerk, Canon BJC- 2000 im Netzwerk, Epson 24- Nadel Entwurfsmodus im Netzwerk
- Schriftsatz: Kopfzeile (-), Fußzeile (-), Gliederung I Coronet 28, Gliederung II Flax 14, Text Albertus Medium 10
- Beschreibung der Dateien auf Diskette Cernel1 + Cernel2⁶

Vorlage	Seite 1 - 3
Term	Seite 4 - 6
Cernel	Seite 7 - 54
Cernel1	Seite 55 - 70
Cernel2	Seite 71 - 79
Cernel3	Seite 80 - 82
Puffer	Seite 83
Puffer1	Seite 84
Puffer2	Seite 85
Abk1	Seite 86
Lite	Seite 87

Heute erstellt mit:

 $\LaTeX 2\varepsilon$

⁶Damalige Seitenzahlen stimmen nicht mehr überein mit der vorliegenden Version.