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Physical Foundations of Solid-State Devices

E. F. Schubert
Rensselaer Polytechnic Institute, Troy NY, USA

Introduction

Quantum mechanics plays an essential role in modern semiconductor heterostructure devices.
The spatial dimensions of such devices are frequently on the scale of just Angstroms. In the
domain of microscopic structures with dimensions comparable to the electron de Broglie
wavelength, size quantization occurs. Classical and semi-classical physics no longer gives a
correct description of many physical processes. The inclusion of quantum mechanical principles
becomes mandatory and provides a most useful description of many physical processes in
electronic and photonic heterostructure devices.

Professors, educators, and students in all countries are welcome to use this manuscript as a
textbook for their classes. Particularly suited are classes that teach the fundamentals of
microelectronic and photonic solid-state devices. I have used this text for several years in a
course entitled: “Physical Foundations of Solid-State Devices” that is being taught to beginning
graduate and advanced undergraduate students at RPI. The text should be of particular interest to
students in Electrical Engineering, Applied Physics, Materials Science, and Microelectronics and
Photonics.

I wish to thank all those who have contributed to this text through numerous valuable
comments.

E. F. Schubert, December 2006
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Chapter 1 — Classical mechanics and the advent of quantum mechanics

Classical mechanics and the advent of quantum mechanics

1.1 Newtonian mechanics

The principles of classical mechanics do not provide the correct description of physical
processes if very small length or energy scales are involved. Classical or newtonian mechanics
allows a continuous spectrum of energies and allows continuous spatial distribution of matter.
For example, coffee is distributed homogeneously within a cup. In contrast, quantum mechanical
distributions are not continuous but discrete with respect to energy, angular momentum, and
position. For example, the bound electrons of an atom have discrete energies and the spatial
distribution of the electrons has distinct maxima and minima, that is, they are not
homogeneously distributed.

Quantum-mechanics does not contradict newtonian mechanics. As will be seen, quantum-
mechanics merges with classical mechanics as the energies involved in a physical process
increase. In the classical limit, the results obtained with quantum mechanics are identical to the
results obtained with classical mechanics. This fact is known as the correspondence principle.

In classical or newtonian mechanics the instantaneous state of a particle with mass m is fully
described by the particle’s position [x(%), ¥(?), z(f)] and its momentum [p.(t), p\(), p-(t)]. For the
sake of simplicity, we consider a particle whose motion is restricted to the x-axis of a cartesian
coordinate system. The position and momentum of the particle are then described by x(¢) and
p(t)=pi(f). The momentum p(f) is related to the particle’s velocity w(f) by
p(t) =m v(t) = m [dx(¢)/dt] . It is desirable to know not only the instantaneous state-variables x(¢)
and p(¢), but also their functional evolution with time. Newton’s first and second law enable us to
determine this functional dependence. Newton’s first law states that the momentum is a constant,
if there are no forces acting on the particle, i. e.

0

= const. 1.1
P (L.1)

p) = mv(@) =

Newton’s second law relates an external force, F, to the second derivative of the position x(z)
with respect to ¢,

d? x(¢)

F = m
d¢?

ma (1.2)

where a is the acceleration of the particle. Newton’s first and second law provide the state
variables x(f) and p(¥) in the presence of an external force.

Exercise 1: Resistance to Newton’s and Kepler’s laws. Newton’s laws were greeted with
skepticism. Newton postulated that a body continues its uniform motion if there are no forces
acting on the body. Opposing contemporaries argued that this would be counter-intuitive and in
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Chapter 1 — Classical mechanics and the advent of quantum mechanics

utter conflict with daily experience: A carriage must be constantly pulled by horses for the
carriage to move at a constant velocity (see Fig. 1.1). They further argued that as soon as the
horses would stop pulling the carriage, it would rest!

Fig. 1.1. Did Newton’s first law, which postu-
lates that a body maintains a constant velocity
if no forces act on the body, contradict intuition
and experience? (after Carriage Association of
America, 2004).

What was erroneous in the arguments brought forward by Newton’s critics?

Kepler was greeted with skepticism as well. Not understood by the citizens of the village he was
born in, they turned against his mother and accused her of being a witch. Despite the threat of
torture, she did not admit to being a witch. Kepler’s intervention helped to set her free after she
was kept in jail for 14 months. She died six months after her release.

1.2 Energy
Newton’s second law is the basis for the introduction of work and energy. Work done by moving
a particle along the x axis from 0 to x by means of the force F(x) is defined as

W(x) = j;‘ F(x)dx . (1.3)

The energy of the particle increases by the (positive) value of the integral given in Eq. (1.3). The
total particle energy, E, can be (i) purely potential, (i7) purely kinetic, or (iii) a sum of potential
and kinetic energy. If the total energy of the particle is a purely potential energy, U(x), then
W(x) = — U(x) and one obtains from Eq. (1.3)

F(x) = —%U(x). (1.4)

If, on the other hand, the total energy is purely kinetic, Eq. (1.2) can be inserted in the energy
equation, Eq. (1.3), and one obtains with (d*/df*) x = w(d/dx) v

1
Eyin = vaz - £ (1.5)
If no external forces act on the particle, then the total energy of the particle is a constant and is

the sum of potential and kinetic energy

2
Eroal = Exin + U(x) = §—m + U) . (1.6)
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Chapter 1 — Classical mechanics and the advent of quantum mechanics

An example of a one-dimensional potential function is shown in Fig. 1.2. Consider a
classical object, e. g. a soccer ball, positioned on one of the two slopes of the potential, as shown
in Fig. 1.2. Once the ball is released, it will move downhill with increasing velocity, reach the
maximum velocity at the bottom, and move up on the opposite slope until it comes to a
momentary complete stop at the classical turning point. At the turning point, the energy of the
ball is purely potential. The ball then reverses its direction of motion and will move again
downhill. In the absence of friction, the ball will continue forever to oscillate between the two
classical turning points. The total energy of the ball, i. e. the sum of potential and kinetic energy
remains constant during the oscillatory motion as long as no external forces act on the object.

Ulx) Classical
Classical turning point
turning point __d l Fig. 1.2. Potential en-
F=—94 yw g 12
I l ________________ dx ./ ergy as a function of

total energy of the par-
ticle shown is the sum of
kinetic and potential en-
ergies. The force F act-
ing on the particle is the
negative derivative of
the potential energy with
respect to x.

; ] spatial coordinate x. The
Particle

total

1.3 Hamiltonian formulation of newtonian mechanics
Equations (1.1) and (1.2) are known as the newtonian formulation of classical mechanics. The
hamiltonian formulation of classical mechanics has the same physical content as the newtonian
formulation. However, the hamiltonian formulation focuses on energy. The hamiltonian
Sfunction H(x, p) is defined as the total energy of a system

2
H(x,p) = é’—m v U®). (1.7)

The partial derivatives of the hamiltonian function with respect to x and p are given by

0 d
L Hwp) = U (1.8)
aiH(x,p) - 2 (1.9)
p m

Employing these partial derivatives and Egs. (1.1) and (1.4), one obtains two equations, which
are known as the hamiltonian equations of motion:
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dx 0

= H(x, 1.10
4 o (x, p) (1.10)
dp 0
— = ———H(x,p). 1.11
py o 2% p) (L.1T)

Formally, the linear Eq. (1.1) and the linear, second order differential Eq. (1.2) have been
transformed into the two linear, first order partial differential Eqs. (1.10) and (1.11). Despite this
formal difference, the physical content of the newtonian and the hamiltonian formulation is
identical.

1.4 Breakdown of classical mechanics

One of the characteristics of classical mechanics is the continuous, non-discrete nature of its
variables position, x(¢), and momentum, p(¢). That is, a particle can have any (non-relativistic)
momentum with no restrictions imposed by the axioms of classical mechanics. A second
characteristic of classical mechanics is the deterministic nature of time dependent processes.
Once initial conditions of a mechanical problem are known (that is the position and momentum
of all particles of the system), the subsequent evolution of particle motion can be predetermined
according to the hamiltonian or newtonian equations of motion. In its final consequence,
determinism would predetermine the entire universe from its birth to its death. However,
quantum-mechanics shows, that physical processes are not predetermined in a mathematically
exact sense. As will be seen later, the determinism inherent to newtonian mechanics is in conflict
with with quantum mechanics.

Quantum mechanical principles were first postulated by Planck to explain the black-body
radiation. At the end of the 19th century, scientists tried to explain the emission intensity
spectrum of a black body with temperature 7. A black body is defined as a perfectly absorbing,
non-reflecting body. The intensity spectrum /(A) (in Watts per unit surface area of the black body
and per unit wavelength) was experimentally found to be the same for all black bodies at the
same temperature, as predicted by arguments based on thermodynamics. The spectral intensity of
black-body radiation as a function of wavelength is shown in Fig. 1.3 for different temperatures.

Rayleigh and Jeans predicted a law based on laws of mechanics, electromagnetic theory and
statistical thermodynamics. The Rayleigh-Jeans formula is given by

0 = 27;# (1.12)

where k is Boltzmann’s constant. However, this formula yielded agreement with experiments
only for long wavelengths. For short wavelengths, namely in the ultraviolet region, the formula
has a singularity, i. e. I[(A— 0) — oo. Thus, the formula cannot be physical meaningful and this
non-physical phenomenon has been called the “UV catastrophe’.

Planck (1900) postulated that the oscillating atoms of a black body radiate energy only in the
discrete, i. e. quantized amounts

E = ho 2he 3ho, « = he2l. 2he2™ 3pe 2% . (1.13)
A A A

where i = h/(2m) is Planck’s constant divided by 2m, ¢ is the velocity of light, and © =2nf is
the intrinsic angular frequency of the radiating oscillators. The quantum constant or Planck’s
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constant has a value of
h o= h/2mn) = 1.05 x 107%Js. (1.12)

Employing this postulate in the black-body radiation problem, Planck obtained the following
formula for the spectral intensity distribution of a black body at temperature 7

2
) = 4nhc (1.15)

35 exp 2nhc _1
AkT

10 ultraviolet 1 visible infrared I

|

|

|

i Fig. 1.3. Spectral intensity distribu-
: tion of Planck’s black-body radia-
|

S tion as a function of wavelength for
" different temperatures. The maxi-
mum of the intensity shifts to shorter

6F

wavelengths as the black-body tem-
perature increases.

Intensity I (arb. units)

0 1.0 2.0 ' 3.0
Wavelength A (um)

Planck’s law of black body radiation was in agreement with experimental observations. The
maximum intensity of radiation can be deduced from Eq. (1.15) and it occurs at the wavelengths
given by Wien’s law

Amax I’ = const. = 2830pumK. (1.16)

This law predicts that the maximum intensity shifts to the blue spectral region as the temperature
of the black body is increased. The energy of the black body radiation at the intensity maximum
is given by Emax =hc/Amax and Enax equals about five times the thermal energy, that is
Erax = 4.98 kT. Several black body radiation spectra are shown in Fig. 1.3.

Planck’s postulate of discrete, allowed energies of atomic oscillators as well as of forbidden,
or disallowed energies marks the historical origin of quantum mechanics. It took scientists
several decades to come to a complete understanding of quantum mechanics. In the following,
the basic postulates of quantum mechanics will be summarized and their implications will be
discussed.
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Exercise 2: The color of hot objects. If an object gets sufficiently hot, it appears to the human
eye, to glow in the red region of the visible spectrum. Assume that the emission spectrum of the
hot object peaks at a wavelength of 650 nm. Calculate the temperature of the object.

Solution: The temperature of the hot object is 4431 K.

As the temperature of the object is increased further, the glow changes from the reddish to a
yellowish color. At even higher temperatures, the light emitted by the object changes to a white
glow. Explain these experimental observations based on the black body radiation.

Solution: As the temperature of the black body increases, the peak wavelength shifts from the
infrared into the visible and ultimately into the ultraviolet. At low temperatures, only the
short-wavelength tail of the radiation reaches into the visible spectrum and the body
therefore appears as red. When the black body is at sufficiently high temperatures, the
emission spectrum covers the entire visible spectrum and the body appears as white.

Thermal and night-vision imaging systems can detect the thermal radiation emitted by hot
electronic components or by humans, as shown in Fig. 1.4. What is the peak wavelength of

planckian emission of a hot electronic component of 100 °C and a human body at 37 °C?

Solution: The peak emission wavelength of the electronic component and human body is
7.7 pm and 9.3 um, respectively.

Why is a planckian radiator assumed to be perfectly black?
Solution: This assumption is made to ensure that the body does not reflect light. If the body
were not perfectly black, it would reflect light thereby appearing in a certain color even if it
were at 0 K.

How do we call planckian radiation in ordinary language?

Solution: Heat glow or incandescence.

35°C

30°C

25°C

20 °C

Fig. 1.4. Thermal infrared image obtained in the 3—6 um wavelength range of (a) an
electronic circuit and (b) a person having touched a cold wall and leaving a “thermal im-
print” (after Sierra Pacific Corp., 2004; Mikron Corp., 2004).
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Chapter 2 — The postulates of quantum mechanics

The postulates of quantum mechanics

2.1 The five postulates of quantum mechanics

The formulation of quantum mechanics, also called wave mechanics focuses on the wave
function, Y(x, v, z, f), which depends on the spatial coordinates x, y, z, and the time ¢. In the
following sections we shall restrict ourselves to one spatial dimension x, so that the wave
function depends solely on x. An extension to three spatial dimensions can be done easily. The
wave function W(x, ¢) and its complex conjugate ¥*(x, ¢) are the focal point of quantum
mechanics, because they provide a concrete meaning in the macroscopic physical world: The
product W*(x, £) W(x, ) dx is the probability to find a particle, for example an electron, within
the interval x and x + dx. The particle is described quantum mechanically by the wave function
Y(x, ). The product WY*(x, £) W(x, ?) is therefore called the window of quantum mechanics to
the real world.

Quantum mechanics further differs from classical mechanics by the employment of
operators rather than the use of dynamical variables. Dynamical variables are used in classical
mechanics, and they are variables such as position, momentum, or energy. Dynamical variables
are contrasted with static variables such as the mass of a particle. Static variables do not change
during typical physical processes considered here. In quantum mechanics, dynamical variables
are replaced by operators which act on the wave function. Mathematical operators are
mathematical expressions that act on an operand. For example, (d/dx) is the differential
operator. In the expression (d/dx) W(x, ), the differential operator acts on the wave function,
W(x, £), which is the operand. Such operands will be used to deduce the quantum mechanical
wave equation or Schrodinger equation.

The postulates of quantum mechanics cannot be proven or deduced. The postulates are
hypotheses, and, if no violation with nature (experiments) is found, they are called axioms, i. e.
non-provable, true statements.

Postulate 1
The wave function W(x, y, z, f) describes the temporal and spatial evolution of a quantum-
mechanical particle. The wave function W(x, ¢) describes a particle with one degree of freedom
of motion.

Postulate 2
The product W*(x, £) ‘P(x, ¢) is the probability density function of a quantum-mechanical particle.
W*(x, £) W(x, f) dx is the probability to find the particle in the interval between x and x + dx.
Therefore,

jio P, 0) P, ) de = 1 @.1)
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If a wave function ¥(x, ¢) fulfills Eq. (2.1), then ¥(x, ¢) is called a normalized wave function.
Equation (2.1) is the normalization condition and implies the fact that the particle must be
located somewhere on the x axis.

Postulate 3
The wave function W(x, ¢) and its derivative (0/0x) W(x, f) are continuous in an isotropic
medium.

lim W(x,t) = ¥(xg,1) (2.2)
X—>X(

lim i\Il(x,z) = i\P(x,z) . (2.3)
X—>X ox ox X=X

In other words, W(x, f) is a continuous and continuously differentiable function throughout
isotropic media. Furthermore, the wave function has to be finite and single valued throughout
position space (for the one-dimensional case, this applies to all values of x).

Postulate 4
Operators are substituted for dynamical variables. The operators act an the wave function ‘Y(x, 7).
In classical mechanics, variables such as the position, momentum, or energy are called
dynamical variables. In quantum mechanics operators rather than dynamical variables are
employed. Table 2.1 shows common dynamical variables and their corresponding quantum-
mechanical operators

Dynamical variable in Quantum-mechanical

classical mechanics operator
X X (2.4)
f(x) f(x) (2.5)

h 0
—_—— 2.6

P 1 Ox 26)
f(p) ¢ (ﬂ i} 2.7)

1 Ox

h 0
Etotal - T 8_1 (28)

Table 2.1: Dynamical variables and their corresponding quantum-mechanical operators.

We next substitute quantum mechanical operators for dynamical variables in the total energy
equation (see Eq. 1.2.6)

2
Lt U®) = Bl (2.9)
2m
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Using the substitutions of Egs. (2.4) to (2.8), and inserting the operand ‘P(x, ¢), one obtains the
Schrédinger or quantum mechanical wave equation

2 2
h 0 Y(x,t) + Ux)Y¥Y(x,t) = —i%‘l’(x,t). (2.10)
i

2m  ox?

The Schrodinger equation is, mathematically speaking, a linear, second order, partial differential
equation.

Postulate S
The expectation value, (&), of any dynamical variable &, is calculated from the wave function
according to

(€ = I: W (2, 1) Egp W, 1) d (2.11)

where &, 1s the operator of the dynamical variable &. The expectation value of a variable is also
referred to as average value or ensemble average, and is denoted by the triangular brackets (...).
Equation (2.11) allows one to calculate expectation values of important quantities, such as the
expectation values for position, momentum, potential energy, kinetic energy, etc.

The five postulates are a concise summary of the principles or quantum mechanics. The
postulates have severe implications on the interpretation of microscopic physical processes. On
the other hand, quantum-mechanics smoothly merges into newtonian mechanics for macroscopic
physical processes.

The wave function W(x, ¢) depends on time. As will be seen in the Section on Schrodinger’s
equation, the time dependence of the wave function can be separated from the spatial
dependence. The wave function can then be written as

P(x,) = y(x)e®! (2.12)
where w(x) is stationary and it depends only on the spatial coordinate. The harmonic time
dependence of W(x, ) is expressed by the exponential factor exp (i w ?).

An example of a stationary wave function is shown in Fig. 2.1 and this wave function is used

to illustrate some of the implications of the five postulates. It is assumed that a particle is
described by the wave function

y(x) = A(l+cosx) for |x| < = (2.13)

y(x) = 0 for [x| > . (2.14)

According to the second postulate, the wave function must be normalized, i. e.

j_woo v y)de = 1. (2.15)
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e

Y(x) =4 (1 + cosx)
for |x|<m

Fig. 2.1. Example for a one-dimen-

I ‘ ' sional wave function y(x). Also

o () shown is a corresponding potential

function, U(x). This potential func-

tion provides a driving force to-

Utx) wards x = 0, that is towards mini-
Ux) mum energy.

This condition yields the constant 4 =1/ /31 and thus the normalized wave function is given
by

1

y(x) \/ﬁ (1 + cosx) for |x|l < (2.16)

v(x) = 0 for |x| > n. (2.17)

Note that y(x) is a continuous function and is continuously differentiable throughout position
space.

The potential energy of the particle, whose wave function is given by Egs. (2.16) and (2.17),
has a minimum probably around x = 0. A guess of such a potential is shown in the lower part of
Fig. 2.1. A particle in such a potential experiences a force towards the potential minimum (see
Eq. 2.4). Therefore, the corresponding wave function will be localized around the potential-
minimum.

Next some expectation values associated with wave function shown in Fig. 2.1 will be
calculated using the fifth Postulate. The position expectation value of a particle described by the
wave function y(x) is given by

(x) = j_“; v () x wix) dx. (2.18)

Note that x is now an operator, which acts on the wave function y(x). Note further that x y(x) is
an odd-symmetry function, and, since y*(x) is an even-symmetry function, the integrand
y*(x) x y(x) is again an odd-symmetry function function. The integral over an odd function is
Zero, i. e.

(x) = o. (2.19)
Thus, the expectation value of the position is zero. In other words, the probability to find the

particle at any given time is highest at x = 0.
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It is interesting to know, how far the wave function is distributed from its expectation value.
In statistical mathematics, the standard deviation of any quantity, e. g. &, is defined as

<§2> - (&) . (2.20)

A measure of the spatial extent of the wave function is the standard deviation of the position of
the particle. Hence, the spatial standard deviation of the particle on the x axis is given by

c = <x2>—<x>2 . 2.21)

With (x) = 0 one obtains

TC2

Y
2 * 2 5
X = X)X x)dx = — - —. 2.22
(%) = [v'@a? v — - = (222)
—T
The standard deviation o = ((x*) — (x)’ )l/ 2= (G )l/ > is shown in Fig. 2.1 and it is a measure
of the spatial extent of the wave function.
The expectation value of the particle momentum can be determined in an analogous way

Tk n o
@)—jww@ra%ww. (2.23)

—00

Evaluation of the integral yields (p) = 0. In other words, the particle has no net momentum and it
remains spatially at the same location, which is evident for a stationary wave function.

Similarly, the expectation values of kinetic energy, potential energy, and total energy can be
calculated if y(x) and U(x) are known. The expectation values of these quantities are given by:

o P2 T s [ -n* 8?
Kinetic energy: <Ekin> = ﬂ> = _J;O U} (x)( om o ]\y(x)dx (2.24)
Potential energy: <U > = Ijow \|/*(x) U(x) y(x)dx (2.25)
Total energy:
© a2 2
@mo=<%m+w>=iwu{7;aﬁ+Umhmm (2.26)

The evaluation of the equations yields that the expectation values of the kinetic, potential, and
total energy of the particle are finite and non-zero.
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2.2 The de Broglie hypothesis
The de Broglie hypothesis (de Broglie, 1923) is a significant milestone in the development of
quantum mechanics because the dualism of waves and matter finds its synthesis in this
hypothesis. Typical physical properties that had been associated with matter, before the advent
of quantum mechanics, were mass, velocity, and momentum. On the other hand, wavelength,
phase-velocity, and group-velocity had been associated with waves. The bridge between the
world of waves and the corpuscular world is the de Broglie relation

A o= hip (2.27)

which attributes a vacuum wavelength A to a particle with momentum p. This relation, which de
Broglie postulated in 1923, can also be written as

p = hk (2.28)

where k=2n/A 1s the wavenumber. The kinetic energy of a classical particle can then be
expressed in terms of its wavenumber, that is

2 2 .2
p nek
E.. = £ . 2.29
kin m m ( )

Four years after de Broglie’s hypothesis, Davisson and Germer (1927) demonstrated
experimentally that a wavelength can be attributed to an electron, i. e. a classical particle. They
found, that a beam of electrons with momentum p and wavelength was diffracted by a Ni-crystal
the same way as x-rays of the same wavelength A. The relation between electron momentum p
and the x-ray wavelength A, which yields the same diffraction pattern, is given by the de Broglie
equation, Eq. (2.27). Thus, a bridge between particles and waves had been built. No longer could
one think of electrons as pure particles or x-rays as pure waves. The nature of small particles has
both, particle-like and wave-like characteristics. Analogously, a wave has both, wave-like and
particle-like characteristics. This fact is known as the dual nature of particles and waves.

Incident beam of

)/z/ particles or waves

Fig. 2.2. Diffraction of a
wave or beam of par-
ticles using a transparent
slit in a screen. The in-
tensity pattern of the dif-
fracted beam is shown at
Intensity pattern of the bottom.

// diffracted beam

Opaque screen with
transparent slit
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A simple diffraction experiment is illustrated in Fig. 2.2 which shows a beam of particles
incident on a screen having a narrow slit. A diffraction pattern is detected on a screen behind the
slit as shown in the lower part. Electrons and x-rays with the same energy generate the same
diffraction pattern. The diffraction pattern can be calculated by taking into account the
constructive and destructive interference of waves.

The Davisson and Germer experiment further shows that the deterministic nature of classical
mechanics is not valid for quantum mechanical particles. No longer is it possible to predict or
calculate the exact trajectory of a particle. Instead, one can only calculate probabilities
(expectation values). For example, the position expectation value of an electron passing through
the slit of Fig. 2.2 is (x) = 0.

Fig. 2.3. Diffraction pattern of
(2) an x-ray beam and (b) an
electron beam passing through
an Al foil.

Convincing experimental evidence of the wave nature of electrons is shown in Fig. 2.3
which shows two very similar diffraction patterns, one obtained by a beam of x-rays and one by
a beam of electrons when passing through an Al foil.

2.3 The Bohr—Sommerfeld quantization condition

During the years 1913-1918, Bohr developed a quantum mechanical model for the electronic
states in a hydrogen atom (Bohr, 1913, 1918, 1922). This model supposes that the atom consists
of a nucleus with positive charge e and one electron with charge —e. The motion of the electron
is described by Newton’s laws of classical mechanics and a quantum condition. Bohr specifically
postulated that an atomic system can only exist in a certain series of electronic states
corresponding to a series of discrete values for its energy, and that consequently any change in
energy of the system, including the emission and absorption of photons, must take place by a
complete transition of the electron between two such states. These states are called as the
stationary electron states of the system. Bohr further postulated that the radiation absorbed or
emitted during a transition between two states possesses a angular frequency ®, given by the
relation

w — E, = ho (2.30)

where 7 =h /(2r) is the reduced Planck constant and E, and E, are the energies of the two
states (the mth state and the nth state) under consideration.

The quantum condition of Bohr can be visualized most easily in terms of the electron de
Broglie wave orbiting the nucleus. (Historically, the de Broglie wave concept was postulated in
1925, i. e. about a decade affer the development of Bohr’s hydrogen atom model. However, the
de Broglie wave concept is used here for convenience). Fig. 2.4 shows a circular electron orbit
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of radius r. The electrostatic potential of the nucleus has symmetry and the electron is
consequently moving with a constant velocity about the nucleus. Electronic orbitals are allowed,
only if the circumference is an integer multiple of the electron de Broglie wavelength

S = (n+1)A (n=0,1,2..) (2.31)

where 7 is an integer and S is the circumference of the electron orbit. If this equation is fulfilled,
the electron de Broglie wave is interfering constructively with itself as shown in Fig. 2.4(b).
Such orbits are called allowed orbits. If the latter equation is not fulfilled, the electron wave
interferes destructively with itself as shown in Fig. 2.4(c). Such orbits are called forbidden or
disallowed.

(b) (c) Fig. 2.4. (a) De Broglie
wave representing an elec-
tron orbiting a nucleus. (b)
Constructive inter-ference
of wave satisfying the
Bohr-Sommerfeld quan-
tum condition. (c¢) Destruc-
tive interference of wave
not satisfying the quantum

constructive Fle:tr;ctwe condition results in disal-
1 mterierence
interference lowed state.

v o k = constant
(a)
k= k(s)
)
Fig. 2.5. Electrons can orbit the positively

bs 55 charged nucleus on a circular or elliptical
curve. (a) The motion of electrons in
Bohr’s atom model is fully described by (i)
classical laws (Kepler's laws of planetary
motion) and (ii) the Bohr-Sommerfeld
quantum condition. (b) The one-dimen-
sional Bohr—Sommerfeld quantum condi-

Ay tion can be obtained from an ellipsoid
(b) = o — > compressed onto the x axis. (c) Illustration
a | b of quantum state » = 1, where the number n
is the number of nodes of the wave func-
S i w(x) tion.
N4 o

Only circular orbits have been considered in Eq. (2.31), because the electron is assumed to
move in a constant potential with constant momentum p =/ / A. However, the laws of classical
mechanics also allow elliptical orbits. For example, the laws of planetary motion (Kepler’s laws)
allow for elliptical orbits of the planets around the sun. The nucleus is in one of the focal points
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of the ellipse as shown in Fig. 2.5. In such elliptical orbits the momentum is a function of the
position. It is therefore necessary to generalize the quantum condition of Eq. (2.31) in order to
make it applicable to orbits other than circular orbits.

A generalization of the quantum condition is obtained by first rearranging Eq. (2.31) and
employing the wavenumber k& = 21t/ A according to

LkS = n+1 n=0,1,2...). (2.32)
21

Because k depends on the position for elliptical orbits an integration rather than a product must
be employed

§S k(s)ds = 2m(n+ 1) (n=0,1,2...). (2.33)

The integral is a closed line integral along the electron orbit S. Using the de Broglie relation
p = & k one obtains.

355 p(s)ds = 2mnh(n+1) (n=012..) (2.34)

which is known as the Bohr—-Sommerfeld quantization condition. The integral h_1§ p(s)ds is

called the phase integral, since it provides the phase change of the electron wave during one
complete orbit. The phase integral must have values of multiplies of 2r in order to achieve
constructive interference of the electron wave with itself. The properties of the hydrogen atom
and of hydrogenic impurities are discussed in greater detail in the Chapter on hydrogenic
impurities.

The Bohr—Sommerfeld quantization condition has been derived for a system with three
degrees of freedom. In a system with only one degree of freedom, the one-dimensional Bohr-
Sommerfeld condition applies. To obtain this condition the ellipse shown in Fig. 2.5(b) is
compressed to a line on the x axis. Thus, the particle is confined to the x axis. The line-integral of
Eq. (2.34) can then be simplified to

f poras = [V pdr + [} poods (235)

Using the fact that the two integrals on the right-hand side of the equation are identical because
of symmetry considerations, one obtains the one-dimensional Bohr-Sommerfeld quantization
condition

fjp(x)dx = mh(n+l) (n=0,1,2..) (2.36)

Most wave functions are oscillating functions. Oscillating functions have locations of zero
amplitude, i. e. nodes. It is convenient to name the wave functions by the number of nodes.
Assume, for example, n = 1. Then the phase shift in Eq. (2.36) is 2n. The corresponding wave
function has one node. Thus the wave function with the quantum number »n has n nodes. The
quantum number is identical with the number of nodes of that wave function.

If we choose n=1 and assume p(x)=p = constant, then, using the de Broglie relation,
Eq. (2.36) simplifies to
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b-a = A. (2.37)

The corresponding wave function is shown in Fig. 2.5(c), where the wave function has one node
(n=1) in the center. By convention, the nodes at the left and right end of the wave function are
not counted.

Exercise 1: Bohr’s hydrogen atom model. Many properties of the hydrogen atom can be
calculated in terms of the Bohr model. It is based on classical mechanics as well as quantum
mechanics. We assume that the electron orbits the hydrogen atom on a circular orbit with radius
ag. The classical mechanics condition for the steady state is that the centrifugal force equals the
centripetal (coulombic) force, i. e.

m V2 82

= — (2.38)
dp dregag

The quantum mechanical condition is that the electron wave must interfere constructively with
itself (Bohr-Sommerfeld quantization condition), i. e.

2nay = (n+1)A for n=0,1,2... (2.39)

Using Egs. (2.38) and (2.39) and the de Broglie relation, calculate the Bohr radius, electron
potential energy, kinetic energy, and ionization energy (i. e. Rydberg energy).
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E Coulomb potential
i / ~ oulomb potentia Fig. 2.6. Coulomb po-

tential of a hydrogen

—m\ /ﬂ_ atom. The energy of

= pot the electron orbiting
\ / the proton is the sum of
' ' - potential and Kkinetic

0 s
energy.
+— Location of proton gy

Exercise 2: Schodinger on quantum rules. Erwin Schrodinger stated: “The appearance of
quantum rules for the hydrogen atom is just as natural as is the existence of resonances for a
vibrating string.” Ann. Phys. 79, 361 (1926). What are the similarities between the quantum rules
of a hydrogen atom and a vibrating string?

Answer: In both cases, only certain modes of oscillation are allowed. For a vibrating string,
we call these oscillations that fundamental oscillation and its harmonics. In the hydrogen
atom, we call these oscillations the ground state and the excited states of the electron.
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Position and momentum space

3.1 Group and phase velocity
Consider a sinusoidal plane wave is propagating along the x axis without any distortion. The
wave can be represented by the wave function

P(x,) = W(r—vp 1) (3.1)

where vy, 1s the phase velocity of the wave. This wave possesses translational symmetry, since
the wave at the time ¢ is identical to the wave at ¢ = 0 shifted on the x axis by an amount of vy .
For example, a sinusoidal plane wave with amplitude 4 is given by

WY(x,t) = Acos(kx—ot). (3.2)
The locations of constant phase are given by

kx — ot = const. (3.3)

Differentiation of the position with respect to ¢ yields the phase velocity

dx o)
% = — = — 34
ph d P ( )

Groups of waves, also called wave packets, can propagate with velocities different from the
phase velocity. A group of waves is illustrated in Fig. 3.1 by a superposition of two sinusoidal
waves with similar angular frequency:

Group

Fig. 3.1. Example for a group of
waves propagating along the x-
direction. An entire group of
wavelets propagates with group
velocity vgroyp. Individual wave-
lets propagate with phase velocity

Vphase-
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W(x,t) = Acos(kj x—wmyt) + Acos(ky x—my t). (3.5)

We define
0 = o - Ao and 0, = o+ Ao (3.6)
ki = k — Ak and ky = k + Ak . (3.7)

Trigonometric modification of Eq. (3.5) yields
W(x,t) = 2Acos(wt—kx) cos(Awt— Ak x) . (3.8)

With Ao << ®, we can interpret the wave function as a rapidly oscillating term cos(w ¢ — kx) and
a slowly oscillating term cos(Aw ¢ — Akx) which in turn modulates the amplitude of the rapidly
oscillating term. The zeros of the rapidly oscillating term propagate with the phase velocity
voh = ®/k . On the other hand, the phase of the slowly varying term, i.e. the wave group,
propagates at a velocity ve = Aw/ Ak . Thus, for infinitesimal small quantities of A®w and Ak, we
obtain the group velocity

do
= — 3.9
Var ak (3.9

The group velocity is the velocity at which the wave packets or wavelets propagate in space. The
phase velocity can be smaller, equal, or larger than the group velocity. If the phase velocity is
larger (vpn > vgr), then the wavelets build up at the back end of the group, propagate through the
group, and disappear at the front of the group. If the phase velocity is smaller (vpn < vgr), then the
wavelets are building up at the front end of the group and disappear at the rear end of the group.
In media in which the phase velocity is independent of the frequency of the wave, the phase
velocity and group velocity are identical
Vho= v = - = ‘(11—‘:. (3.10)

Such media are called nondispersive media. Vacuum, and with good approximation also air, are
such nondispersive media. The velocity of electromagnetic waves in vacuum and air is
¢=2.99 x 10* m/s and this velocity is independent of the frequency of the wave.

If, however, the phase velocity depends on o, then vp, # ve. Media, in which vpp # vgr is
fulfilled, are called dispersive media. The group velocity in dispersive media can be written as

dvph
dk

v = Vph + Kk (3.11)

gr

The validity of this equation can be verified by insertion of vp, = ®/k. Using k=2n/A and
d\ ' =— 12 dA, one can show that

dv
_ ph
Vor = Vph ~ A Ty

(3.12)
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We have just shown that a well-defined group of waves, i.e. a wave packet, moves with the
group velocity. In the classical limit, the group velocity is identical to the propagation velocity of
the classical particle described by the wave-packet, i. e.

Vgr = Vclassical - (3.13)

This requirement is called the correspondence principle. The correspondence principle, which is
due to Bohr (1923), postulates a detailed analogy between quantum mechanics and classical
mechanics. Specifically it postulates that the results of quantum mechanics merge with those of
classical mechanics in the classical limit, i. e. for large quantum numbers. Using the definitions
of group velocity and of the classical velocity one obtains

do _ p (3.14)
dk m

Substitution of £ by using the de Broglie relation (p = 7 k) and subsequent integration yields

Ekin = ho = — (315)
2m

which is the famous Planck relation. The Planck relation further illustrates the dualism of
particles and waves. A particle with momentum p oscillates at an angular frequency ® given by
the Planck relation. On the other hand, a wave with angular frequency ® has a momentum p. The
kinetic energy p>/ (2m) of the particle coincides with the quantum energy %o of the wave
representing that particle.

Exercise 1: Phase and group velocity. The experiment described here elucidates the properties
of waves, in particular the phase and group velocity. Go to a local pond and throw stones into the
water. Watch the water waves created. Several properties of waves can be identified.

The water waves are confined to the surface of the water. What are the curves of constant
phase?

Identify the phase and group velocity of the waves. Which of the two velocities is higher?
Make a guess for the ratio of vyn/ vgr.

Assume that the distance from the point where a stone enters the water to the shore is x. Can
the time it takes for the wave to reach shore be expressed in terms of phase or group velocity and
the distance x?

3.2 Position-space and momentum-space representation, and Fourier transform
The Fourier transform is a mathematical tool that allows us to represent a function in two
different domains. In electrical engineering, we can represent an electrical signal, for example a
time-dependent voltage, in the time domain and the frequency domain. Assume that the voltage
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depends on time ¢ and has a quasi-period 7 (the voltage may not be strictly periodic and thus we
use the term “quasi-period”). The Fourier transform of the voltage then depends on the frequency
f = 1/t and will have a dominant frequency f = 1/7. Finally, the Fourier transform can also be
expressed as a function of the angular frequency » = 2mnf.

Next, we consider the Fourier transform of a wave function y(x). Assume that the wave
function depends on position x and has a quasi-period A. Then the Fourier transform of the wave
function depends on 1/x and has a dominant “frequency” 1/A. Multiplying 1/A by 2, the Fourier
transform can be expressed as a function of the wavenumber k = 2r/A. Recalling that momentum
and wavenumber are related by de Broglie’s relation, i.e. p = 7k, allows us to express the Fourier
transform as a function of momentum. Thus a wave function y(x) given in real space has a
Fourier transform in momentum space.

According to the 2nd Postulate, the stationary wave function y(x) has a clear physical
meaning: The probability density is given by the product of the wave function and its complex
conjugate, i. e. y*(x) y(x). The wave function y(x) can also be represented in momentum space.
The momentum-space representation is designated as the wave function in momentum space,
®(p). The momentum-space wave function is not a new wave function, but just another
representation of a wave function with the same physical content. The two representations are
related by the Fourier transform (or Fourier integral). The momentum space representation of the
wave function is obtained from the wave function y(x) by the Fourier transform

op) = ——— [y e (3.16)

A2Th

The wave function in real space is calculated from the wave function in momentum space by the
inverse Fourier transform

y(x) = ﬁ jio d(p) e’ dp (3.17)

where ®(p) is the amplitude of the momentum space wave function at the momentum p. The
Fourier transform provides a unique relationship between the momentum space and position
space representation of a particle. That is, for a specific wave function y(x) there is only one
representation in momentum space O(p).

Another property of the Fourier transform is that the normalization condition holds for the
position and momentum space representation. If y(x) is normalized, then ®(p) is normalized as
well.

[ vimumar = [T o"(pompd = 1 (3.18)

The Fourier transform (Eqgs. 3.16 and 3.17) will not be proven here. The interested reader is
referred to the literature (see, for example, Kroemer, 1994). The normalization condition
(Eq. 3.18) can be proven by using the Fourier transform.

3.3 Illustrative example: Position and momentum in the infinite square well
A simple quantum-mechanical potential is the square well with infinitely high walls. It will be
seen in the Chapter on Schrdodinger’s equation how to find the wave functions in the infinite
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square well potential. Here we are not concerned about how to solve Schrodinger’s equation and
how to find the wave function. The solutions are shown in Fig. 3.2. The solutions have discrete
energies and the wave functions are of sinusoidal shape. The wave function of the lowest state
(n = 0) and the first excited state (n = 1) is given by:

Wya(x)
E Fig. 3.2. Below: Position space representation and mo-
2 . .
Wl(x)\-/ mentum space representation of three wave functions
Yo(x), W(x), ¥, (x). The subscript » refers to the num-
E, ber of nodes (nodes at x = + (1/2) L are not counted).
Wo(x) Left: The three lowest wave functions y,(x), W,(x),
E, y3(x) of an infinite quantum well.
[ |
-L/2 +L/2
Position Space Momentum Space
n nodes v, () ?,(p)
-+ —+ —
() mh (nt1)mh P
L L
o, ()
r T j 2Tlth T @ T T p
L L
0y(»)
0 nodeS/\ /\
. — — f . —t —t— —s
1, i, ¥ mh _mm | omh o dmh P
2 2 L L L L

Vo (x)

vi(x) =

For the nth state, the wave function is given by

\Vn(x) =

2 (n+hm=
A cos| ————x +
L L

) (< 5

(3.21)
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Note that these wave functions are normalized. Also note that the wave functions are spatially
confined to the region | x | < (1/2) L. The magnitude of the wave functions is zero in the barriers,
i.e,itisy,(x)=0for |x|>(1/2)L.

The Fourier-transform of Eq. (3.16) is used to obtain the momentum space representations of
the wave functions. For the wave function with zero nodes, yo(x), one obtains,

©o(p) = [ wol)e M dx
(3.22)

L 1 L 1 L
= cos| —p|+|————]|cos|—p||
nh Kn—pL/hj [27‘1 J [n+pL/h) (2?1 ﬂ

For a wave function with n nodes, y,(x), one obtains

©u(p) = [ wae ™" dx

(3.23)
L oL L oL
N VS U S V25 B R E C0  Iv S N S S 00 IO VIR (RS R

JoLlh |ia ip

wherea=(m+1)(n/L)—(p/h)and B=—(n+ 1) (n/L)— (p/h). The momentum representation
y(p) is shown for zero, one, and n nodes (n>>1) on the right-hand side of Fig.3.2. The
momentum representation has several interesting aspects. First, ®,(p) is a symmetric
distribution with respect to p. Consequently, the expectation value of the momentum is zero,
since positive and negative momenta compensate one another. The momentum expectation value
can be calculated according to the 5th Postulate using the momentum operator given in the 4th
Postulate:

(p) = [ v S wear, (3.24)

The evaluation of this integral gives indeed (p) = 0. Second, the momentum representation has
two maxima, one at p =+ (n+ 1)t /i/ L and another one at p = — (n + 1) w7/ L. The two-maxima
are increasingly pronounced with increasing number of nodes of the wave function. We interpret
the standing wave \,(x) as a superposition of two waves, one propagating in negative and
another one in positive x direction. Returning from the wave-oriented viewpoint to the particle-
oriented viewpoint, the wave function y,(x) represents a particle that is propagating back and
forth (oscillating) between the boundaries = (1/2) L on the x axis. The absolute value of the
momentum of the oscillating particle is centered at p = (n+ 1) n//L, as stated above. That is,
the particle, represented by the wave function, oscillates between the boundaries + (1/2) L and
—(1/2) L. Note, however, that the expectation value of the momentum of the oscillating particle
is (p)=0.

To further visualize the properties of the particle, we note that the particle is represented by a
sinusoidal wave function which is confined to — (1/2)L <x <+ (1/2)L, and has n nodes as
shown in the lower left part of Fig. 3.2. The wavelength of the particle is given by
A=2L/(n+1). (Strictly speaking, a wavelength can only be attributed to a wave which is
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strictly periodic, and which is not confined to a certain region.) The instantaneous momentum of
the particle is given by the de Broglie relationship p =%k =2n#4/A. Inserting the wavelength
into this equation yields the momentum of the particle as

_ —(’”?“h , (3.25)

This momentum is in fact the maximum of the momentum distribution obtained from the Fourier
transform as shown in Fig. 3.2.

The momentum space representation has, as already mentioned, the same physical content as
the position space representation. The expectation values of dynamical variables can be
calculated not only from the position space representation (5th Postulate), but also in the
momentum space representation. That is, the expectation value of the dynamical variable & can
be also obtained from the momentum space representation

€ = I: @ (p) Ep P(p) dp (3.26)

where &, 1s the operator corresponding to the dynamical variable &. We proceed to prove this
equation for one specific variable, namely the momentum p. We start with the 3rd and 5th
Postulate to determine the momentum expectation value

) = [7 v [ vmar (3.27)
oo 1 dx

The wave functions can be represented in momentum space using the Fourier transform of
Eq. (3.17):

T T ateonaipwn (B d ipx/ /
) = 5 T 1 [ eee™ &qﬂmdem@. (3.28)

ipx/h

The equation can be simplified by differentiating e*" with respect to x, that is

ieipx/h _ l_peipx/h _ (3.29)

dx h

Introducing this result into Eq. (3.28) yields

1 © o o . .
<p> _ T J‘ J‘ I(I)*(p’)e 1px/hpq)(p)elpx/h dx dp dp’ (3.30)
—00 —00 —00

The functional dependence of the integrand on x is now known explicitly and therefore the
integration over x is done first. Employment of the following relation for the Dirac-delta
function,

!

J‘°° ol(p=p)x/ g, _ zng(p;lp) = 2nhd(p-p) (3.31)

—0o0
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yields

o0 e 0] % , , ,
(p) = I_Oo I_OO © (p)p@(p)d(p—pHdpdp" . (3.32)
Integration over p' finally yields the momentum expectation value
0 *
(p) = f_oo @ (p) pD(p)dp (3.33)

This equation is, for &, = p, identical with Eq. (3.26), which concludes the proof. The dynamical
variable momentum corresponds to the operator (/1) (d/dx) in position space and to the
operator p in momentum space.

What has just been shown for the momentum operator applies to all quantum-mechanical
operators: The expectation value of a dynamical variable can be calculated in the position or
momentum space representation of the wave function by using the position or momentum space
representation of the operator corresponding to the dynamical variable.
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Chapter 4 — Operators

4.1 Quantum mechanical operators

Dynamical variables used in classical mechanics are replaced by quantum-mechanical operators
in quantum mechanics. Quantum mechanical operators can be used in either position space or
momentum space. It was deduced in the preceding section that the dynamical variable
momentum corresponds to the quantum-mechanical operator (h/1)(d/dx) in position space, and
the variable momentum corresponds to the operator p in momentum space. All dynamical
variables have quantum-mechanical operators in position and momentum space. Depending on
the specific problem it may be more convenient to use either the position-space or momentum-
space representation to determine the expectation value of a variable. Table 4.1 summarizes the
dynamical variables and their corresponding operators in position and momentum space.

DYNAMICAL OPERATOR REPRESENTATION
VARIABLE
Variable Position space Momentum space
o n 0
Position X X -—
1 Opy
h 0O
Potential energy U (x) U(x) Ul-—
1 Opy
N
f(x) f(x) i opy
h 0
Momentum —_—
Px i Ox Px
2 2 2 2
Kinetic energy Px B Px
2m 2m oyl 2m
f f (E 3) f
(px) 1 ax (px)
Total ener _h o _h o
& Eoa i o i o
2 2 2
Total energy El 0 +U®) Px ,yl_M 0
2m oyl 2m i Opy

Table 4.1: Dynamical variables and corresponding quantum mechanical operators in their
position space and momentum space representation. Depending on application it can be more
convenient to use either position space or momentum space representation. The function f(x)
denotes any mathematical function of x.
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Two operator representations for the total energy are given in Table 4.1: The first one, —
(/1) (0/01), follows from the 4th Postulate. The second one, p,’/(2 m) + U(x), is the sum of
kinetic and potential energy. The specific application determines which of the four operators is
most convenient to calculate the total energy.

The total energy operator is an important operator. In analogy to the hamiltonian function in
classical mechanics, the hamiltonian operator is used in quantum mechanics. The hamiltonian
operator thus represents the total energy of the particle represented by the wave function y(x)

n? 42
Hy(x) = w4l y(x) + U(x) y(x) 4.1)
or equivalently,
2
Hop) = L) + U(—%%) o(p) . 42)

The hamiltonian operator is of great importance because many problems of quantum mechanics
are solved by minimizing the total energy of a particle or a system of particles.

4.2 Eigenfunctions and eigenvalues
Any mathematical rule which changes one function into some other function is called an
operation. Such an operation requires an operator, which provides the mathematical rule for the
operation, and an eperand which is the initial function that will be changed under the operation.

Quantum mechanical operators act on the wave function W(x, ¢). Thus, the wave function
W(x, t) is the operand. Examples for operators are the differential operator (d/dx) or the integral
operator | ... dx. In the following sections we shall use the symbol Eop for an operator and the
symbol f(x) for an operand.

The definition of the eigenfunction and the eigenvalue of an operator is as follows: If the
effect of an operator &,, operating on a function f(x) is that the function f(x) is modified only by
the multiplication with a scalar, then the function f(x) is called the eigenfunction of the operator
Eop» that is

Sop f(x) = Ag f(x) (4.3)

where A is a scalar (constant). A is called the eigenvalue of the eigenfunction. For example, the
eigenfunctions of the differential operator are exponential functions, because

L4k o g e (4.4)

where A is the eigenvalue of the exponential function and the differential operator.

4.3 Linear operators
Virtually all operators in quantum mechanics are linear operators. An operator is a linear
operator if
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Eop CW(X) = &y W(X) (4.5)

where ¢ is a constant. For example d/dx is a linear operator, since the constant ¢ can be
exchanged with the operator d/dx. On the other hand, the logarithmic operator (log) is not a
linear operator, as can be easily verified.

In classical mechanics, dynamical variables obey the commutation law. For example, the
product of the two variables position and momentum commutes, that is

Xp = px. (4.6)

However, in quantum mechanics the two linear operators, which correspond to x and p, do not
commute, as can be easily shown. One obtains

xpulx) = x(?%} () @.7)
and alternatively
prvl) = Sl = Ty vy (48)

Linear operators do not commute, since the result of Egs. (4.7) and (4.8) are different.

4.4 Hermitian operators
In addition to linearity, most of the operators in quantum mechanics possess a property which is
known as hermiticity. Such operators are hermitian operators, which will be defined in this
section. The expectation value of a dynamical variable is given by the 5th Postulate according to

@ = [~ v@epudr. 4.9)

The expectation value (&) is now assumed to be a physically observable quantity such as position
or momentum. Thus, the dynamical variable § is real, and & is identical to its complex conjugate.

*

g =& and (8 = <§> (4.10)

It is important to note that &q, # Eqp*. To determine the complex conjugate form of Eq. (4.9) one
has to replace each factor of the integrand with its complex conjugate.

(&) = [7 ey vima. @.11)
With Eq. (4.10) one obtains
[ v @epy@de = [7 wEp v (xdr. (4.12)

Operators which satisfy Eq. (4.12) are called hermitian operators.
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The definition of an hermitian operator is in fact more general than given above. In general,
hermitian operators satisfy the condition

[7 wimegpuade = [7 (0 &g, vi)dr (4.13)

where yi(x) and yy(x) may be different functions. If y;(x) and y,(x) are identical, Eq. (4.13)
simplifies into Eq. (4.12).

As an example, we consider the observable variable momentum. 1t is easily shown that the
momentum operator is an hermitian operator. The momentum expectation value is given by

B) =[5 w0 v (4.14)

b b
Integration by part (recall: J- u'vdx=u v| z —I uv'dx ) and using y(x — o) = 0 yields
a a

() = ], w(x)[—%%ij)dx (4.15)

which proves that p is an hermitian operator.

There are a number of consequences and characteristics resulting from the hermiticity of an
operator. Two more characteristics of hermitian operators will explicitly mentioned: First,
eigenvalues of hermitian operators are real. To prove this, suppose &, 1s an hermitian operator
with eigenfunction y(x) and eigenvalue A. Then

[ v @egpu@dr = [T v @y de (4.16)
= [T V0w (4.17)
and also due to hermiticity of the operator
[T vwep v e = [Ty vixdr (4.18)
= X v ) (4.19)

Since Egs. (4.17) and (4.19) are identical, therefore A = A", which is only true if A is real. Thus,
eigenvalues of hermitian operators are real.

Second, eigenfunctions corresponding to two unequal eigenvalues of an hermitian
operator are orthogonal to each other. This is, if £, 1s an hermitian operator and y(x) and
y2(x) are eigenfunctions of this operator and A; and A, are eigenvalues of this operator then
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[Z vimwmde = 0 | (4.20)

The two eigenfunctions y(x) and y»(x) are orthogonal if they satisfy Eq. (4.20). The statement
can be proven by using the hermiticity of the operator &p,. This yields

[7 wi@egpwa@de = [7 ya(0) &g, wi(x)dr (4.21)
_o 1 op Y2 P g op V1 . .
Employing that A; and A, are the eigenvalues of y;(x) and y»(x) yields
0 * 0 *
o [ wi@wa@de = [y () dr . (4.22)

Since A; and A, are unequal, Eq. (4.22) can only be true if y;(x) and wy(x) are orthogonal
functions as defined in Eq. (4.20).

4.5 The Dirac bracket notation

A notation which offers the advantage of great convenience was introduced by Dirac (1926). As
shown in the proceeding section, wave functions can be represented in position space and, with
the identical physical content, in momentum space. Dirac’s notation provides a notation which is
independent of the representation, that is, a notation valid for the position-space and momentum-
space representation.

Let Y¥(x, t) be a wave function and let &, be an operator; then the following integration is
written with the Dirac bracket notation as

<‘P‘§0p M = | jooo W (x, 1) &g W(x,0) di (4.23)
and equivalently in momentum space
0 *
(Veop|¥) = [7 @ (0t @p0)dp . (4.24)

It is important to note the following two points. First, because Dirac’s notation is valid for the
position- and momentum-space representation, the dependences of the wave function on x, 7, or p
can be left out. Thus, only ¥ and not ¥(x, ¢) or ¥(p, f) may be used in the Dirac notation.
However, if desirable, the explicit dependence of ¥ on x, ¢, or p can be included, for example
(Y(x)| Eop | W(x)). Second, the left-hand-side wave function in the bracket is by definition the
complex conjugate of the right-hand-side wave function of the bracket. The integral notation still
provides the explicit notation for the complex conjugate wave function, as shown by the asterisk
(*).

If the operator equals the unit-operator &q, = 1, then

<‘P

For convenience the unit operator can be left out

Eop ) = (¥[1]¥) . (4.25)
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(w)i|w) = (vhv) = (v]¥). (4.26)
The normalization condition, given in the 2nd Postulate can then be written as

(¥|¥)= ji P (6, ) P(x,t)dx = 1. (4.27)

The Dirac notation can also be used to express expectation values. Writing the 5th Postulate in
the Dirac’s notation, one obtains the expectation value (§) of a dynamical variable &, which
corresponds to the operator &g, by

(& = <‘P\éop\‘1’>- (4.28)

Again, either position-space or momentum space representation of the wave function can be
used.

In the Dirac notation, the operator acts on the function on the right hand side of the bracket.
To visualize this fact one can write

(#[eop|¥2) = (W1]Eop¥2) - (4.29)

If it is required that the operator acts on the first, complex conjugate function, the following
notation is used

o0 * *
(Cop W1 W2) = [ wa(x)Egp wix)dx . (4.30)
Using this notation, the definition for hermiticity of operators reads
(V1]eop ¥2) = (Eop Wi1|'2) (31)

or equivalently

*
<\P1 ‘ iop ‘LP2> = <LP2 ‘aop ‘\PI> : (4.32)
This equation is equivalent to the definition of hermitian operators in Eq. (4.13).

4.6 The Dirac delta function
A valuable function frequently used in quantum mechanics and other fields is the Dirac delta
function. The delta function of the variable x is defined as

d(x—-xg) = © (x =x0) (4.33)
d(x—-x9) = 0 (x # xp) . (4.34)

The integral over the delta (8) function remains finite and the integral has the unit value
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j: S(x—xp)dr = 1. (4.35)

The o function can be understood as the limit of a gaussian distribution with an infinitesimally
small standard deviation, that is

2
S(xr—xp) = lim — L exp [i( X~ %0 j ] . (4.36)
2n 2

c—>0 © (o]

Gaussian functions with different standard deviations but the same area under the curve are
shown in Fig. 4.1.

Fig. 4.1. Schematic illustration of a gaussian
Ve function for different standard deviations ©.
The area under the curve remains constant.
For 6 — 0, the Dirac 6 function is obtained.

The o function can also be represented by its Fourier integral

d(x—xp) = ﬁ [ io %)y gy (4.37)

The following equations summarize frequently used properties of the & function

8(x) = 8(-x) (4.38)
Sax) = —8(x) (4.39)
a
F(x)8(x—x9) = f(xg)d(x—xp) (4.40)
ji f(x)8(x—xg)dx = f(xp) (4.41)
[ f’w f(x) d% S(x—xp)dx = —% f(x) (4.42)
x=1x
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The Heisenberg uncertainty principle

5.1 Definition of uncertainty
Quantum mechanical systems do not allow predictions of their future state with arbitrary
accuracy. For example, the outcome of a diffraction experiment such as the Davisson and
Germer experiment can be predicted only in terms of a probability distribution. It is impossible
to predict or calculate the exact trajectory of an individual quantum mechanical particle. The
Heisenberg uncertainty principle (Heisenberg, 1927) allows us to quantify the uncertainty
associated with quantum mechanical particles.
The uncertainty of a dynamical variable, AE, is defined as

e = (- @F). 5.1)

Thus, A& is the mean deviation of a variable & from its expectation value (&). The mean
deviation can be understood as the most probable deviation. Using the fact that the expectation
value of a sum of variables is identical to the sum of the expectation values of these variables,
that is

<Z&i> = (&) (5.2)
i i
one obtains by squaring out Eq. (5.1)
2 2 2

(e = (&) - (&) (53)

Having defined the meaning of uncertainty, we proceed to quantify the uncertainty.
5.2 Position—-momentum uncertainty

In order to quantify the uncertainty associated with a quantum mechanical system, consider a

wave function of gaussian shape as shown in Fig. 5.1. The position space wave function is given
by the gaussian function

2\ox ) (5.4)

The constant 4, is used to normalize the wave function using (y | y) = 1, which yields

A
y(x) = ———=c¢
Gy 2T
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A4, = (@@=l o, . (5.5)

This wave function may represent a particle localized in a potential well. If the barriers of the
well are sufficiently high the particle cannot escape from the well. That is, the wave function is
stationary, i. e. y(x) does not depend on time.

The momentum distribution which corresponds to the gaussian wave function can be
obtained by the Fourier integral

1

O(p) = W

Inserting the wave function, given by Eq. (5.4), into the Fourier integral yields

2
1 P
B 1/4 7] 1 _Z(h/cxj
O(p) = (4n) /Gx o (hiol) e . (5.7)

This function represents a gaussian function with a prefactor. Thus, the Fourier transform of a
gaussian function is also a gaussian function. The gaussian function in Eq. (5.7) has a standard
deviation of 7 /o, which has the dimension of momentum. Therefore, we introduce the standard
deviation in momentum space

[ _°°OO w(x)e PYT gy (5.6)

6, = hlo,. (5.8)

In analogy to Eq. (5.5), we define the normalization constant 4, as

4, = @n)'* s, . (5.9)

Equation (5.7) can be rewritten using the normalization constant 4,,.

_1[17]2
O(p) = —L ¢ pJ (5.10)
2t ©

This equation is formally identical to the position-space representation of the wave function
given by Eq. (5.4). It can be easily verified that the momentum space representation of the state
function is normalized as well (®(p) | ®(p)) = 1. The position and momentum representations of
the wave function are shown in Fig. 5.1.

The position space and momentum space representation of a gaussian wave function allows
us to form the product of the position and momentum uncertainty using Eq. (5.8)

Gy 0, = h. (5.11)

Thus, the product of position uncertainty and momentum uncertainty is a constant. Hence a small
position uncertainty results in a large momentum uncertainty and vice versa. The uncertainty of
the position Ax, as defined by Eq. (5.1) is, in the case of a gaussian function, identical to the
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standard deviation o, of that gaussian function. Thus, Eq. (5.11) can be rewritten in its more
popular form

AxAp = h. (5.12)

This relation was derived for gaussian wave functions and it applies, in a strict sense, only a
gaussian wave functions. If the above calculation is performed for wave functions other than a
gaussian (e. g. square-shaped or sinusoidal), then the uncertainty associated with Ax and Ap is
larger. Hence, the general formulation of the position—-momentum form of the Heisenberg
uncertainty relation is given by

| AxAp 2 h (5.13)

The uncertainty principle shows that an accurate determination of both, position and momentum,
cannot be achieved. If a particle is localized on the x axis with a small position uncertainty Ax,
then this localization is achieved at the expense of a large momentum uncertainty Ap.

Position space T w(x) Momentum space T o(p)

6, ="h/oy

—Ox 0 +0x X —0p 0 +0p 4

Fig. 5.1. Gaussian wave packet in position space (left). The momentum representation of
the Gaussian wavepacket is also a gaussian function (right). The standard deviations are
related by 6, = (h/27m)/ G,. Thus a strongly localized wave packet in position space re-
sults in a delocalized function in momentum space and vice versa.

5.3 Energy—time uncertainty
The uncertainty relation between position and momentum will now be modified using the group
velocity relation, the de Broglie relation, and the Planck relation to obtain a second uncertainty
relation between time and energy. The starting point for this modification is a wave packet that
propagates with the group velocity vg = Ax/At = Aw/Ak. Inserting this relation and the de
Broglie relation Ap = i Ak into the position-momentum uncertainty relation of Eq. (5.13) yields

At Ao > 1. (5.14)

It is now straightforward to obtain a second uncertainty relation by employing the Planck
relation AE = /i Aw, which yields

| AEAt > k| (5.15)

which is the energy—time form of the Heisenberg uncertainty relation. This relation states that
the energy of a quantum mechanical state can be obtained with highest precision (small AE), if
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the uncertainty in time is large, i. e. for long observation times for quantum-mechanical
transitions with a long lifetimes.

The uncertainty relations are valid between the variables x and p (Eq. 5.13) as well as £ and ¢
(Eq. 5.15). These pairs of variables are called canonically conjugated variables. A small
uncertainty of one variable implies a large uncertainty of the other variable of the same pair. On
the other hand, the two pairs of variables x, p and E, ¢ are independent. For example a large
uncertainty in the momentum does not allow any statement about the uncertainty in energy. The
uncertainty principle requires that the deterministic nature of classical mechanics be revised. If
an uncertainty of momentum or position exists, it is impossible to determine the future trajectory
of a particle. On the other hand, the correspondence principle requires that quantum mechanics
merges into classical mechanics in the classical limit. Therefore, the uncertainty of Ax or Ap
should be insignificantly small in classical physics.

Exercise 1: Significance of the uncertainty principle in the macroscopic domain. To see the
insignificance of the uncertainty principle in the macroscopic physical world, a body with mass
m=1kg and velocity v=1m/s is considered. The body moves along the x axis and the
position of its centroid is assumed to be known to an accuracy of Axo = 1 A. Calculate the
position uncertainty after a time of 10 000 seconds.

This exercise elucidates that the uncertainty principle does not contribute a significant
uncertainty in classical mechanics. Thus, even though the trajectory of a macroscopic body
cannot be determined in a strict sense, the associated uncertainty is insignificantly small. Even
after a time of 10'® s (which is 30 x 10° years, i. e. approximately the age of the universe) the
position uncertainty would be just 1 um, which is still very small.

Exercise 2: The natural linewidth of optical tranmsitions. Consider a quantum mechanical
transition from an excited atomic state to a ground state. Assume that the spontaneous emission
lifetime of the transition is t. The uncertainty relation gives the spectral width of the emission as

AE = hit. (5.17)

This linewidth is referred to as the natural linewidth of a homogeneously broadened emission
line.

Problem: Assume that the transition probability follows an exponential distribution, as shown in
Fig. 5.2. Calculate the spectral shape of the emission line. What is the natural linewidth of a
single quantum transition with lifetime 10 ns? Why is the spectral width of a light-emitting diode
(LED), typically 50-100 meV at 300 K, much broader than the natural emission linewidth?
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Quantum-mechanical Optical emission Fig. 5.2. Radiative quantum-
transition with life- with spectral mechanical transition with
time T AL width AE spontaneous lifetime T and
spectral width AE.

y

Exercise 3: The uncertainty relation of information technology. The uncertainty relation is
given by AtA® > 1, where “= 1 is valid for gaussian functions and “> 1 is valid for other
functions. As an approximation, the following relation, termed the wuncertainty relation of
information technology, can be used

AtAf=1. (5.18)

The relation applies to the maximum frequency and minimum time duration of electrical pulses.
That is, an electronic system that is capable of transmitting a pulse of, say 10 ns, must have a
maximum frequency (bandwidth) of Af = 1/10 ns = 100 MHz. Audio amplifiers have a typical
bandwidth of 20 kHz. They can transmit pulses as short as 50 ps.

Problem: Assume that a square-shaped audio pulse of duration 10 ps is being generated. Would a
human being be able to hear it (maximum frequency for hearing is 20 kHz)?

Problem: Very short pulses can be generated by coherent broadband optical source. Assume that
a broadband optical signal reaches from A =0.75 pm to 1.0 um. Calculate the Af corresponding
to the signal and the minimum time duration of the optical pulse. How long are the shortest
pulses that can be generated?

Exercise 4: The uncertainty principle and its meaning to philosophy. After it became evident
that nature is governed by strict laws, philosophers established what was called the Philosophy of
Determinism. This particular school of philosophy postulated that any event in a system would
be determined by the initial conditions and the boundary conditions of the system. Even if we do
not know these initial and boundary conditions, the course of events would still be
predetermined.

The Philosophy of Determinism has significant implications on human existence. Applying
this line of thought to the molecular and the atomic domain would force us to conclude that
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human thoughts and decisions also are predetermined. There would be no avenue to influence
future events and also the course of our lives. We could stop working, as all future events would
be predetermined anyway. Why is the Philosophy of Determinism flawed?

Solution: The discovery of the uncertainty principle by Heisenberg in 1927 removed the
basis of the Philosophy of Determinism. The uncertainty is particularly large in the
microscopic domain, e.g. for molecular reactions in our brain that ultimately govern our
decisions and actions. The origins of the Philosophy of Determinism can be traced back to
Ancient Greece. The Philosophy of Determinism re-emerged in the AD 1500s, and
subsequently gained momentum through Kepler’s and Newton’s entirely deterministic laws.

References
Heisenberg W. “Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanick”
(translated title: “On the illustrative content of quantum-mechanical kinetic and mechanic®)
Zeitschrift fiir Physik 43, 172 (1927)

Werner Heisenberg (1901-1976)
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6

The Schrodinger equation

6.1 The time-dependent Schrodinger equation

The Schrodinger equation is the key equation of quantum mechanics (Schrodinger 1925, 1926a,
1926b). This second order, partial differential equation determines the spatial shape and the
temporal evolvement of a wave function in a given potential and for given boundary conditions.
The one-dimensional Schrodinger equation is used when the particle of interest is confined to
one spatial dimension, for example the x axis. Here, we restrict our considerations to such one-
dimensional cases. Due to the one-dimensional nature of many semiconductor heterostructures,
the one-dimensional Schrodinger equation is sufficient for most applications. To derive the one-
dimensional Schrédinger equation, we start with the total-energy equation, i. e. the sum of
kinetic and potential energy

2

L1 U® = B - (6.1)
2m

Substitution of the dynamical variables by their quantum mechanical operators which act on the
wave function ‘Y(x, ¢) yields the one-dimensional time-dependent Schrodinger equation

n? a2 h
-—— Y(x,t) + Ux)¥(x,1) = ——— ¥Y(x,0) (6.2)
2m gyl 1 ot

The left side of this equation can be rewritten by using the Hamilton or total-energy operator

2 2
H = "% uw. 6.3)
2m  pi?

Using the notation of the Hamilton operator, the time-dependent Schrodinger equation can be
written as

HWY(x,t) = —%% Y(x,1t) (6.4)

Since the Schrodinger equation is a partial differential equation, the product method can be used
to separate the equation into a spatial and a temporal part

LY = v o) (6.5)

where y(x) depends only on x and f(¢#) depends only on ¢ Insertion of Eq. (6.5) into the
Schrédinger equation yields
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1 in d
e Hy(x) = O £(£). (6.6)

The left side of this equation depends on x only, while the right side depends only on ¢. Because
x and ¢ are completely independent variables, the equation can be true, only if both sides are
constant.

ih d
0 ?f(t) = const. (6.7)

Tentatively this constant is designated as const. = E where the meaning of £ will become evident
below. Integration of Eq. (6.7) yields

f(t) = e E/ML (6.8)
By using e (EM = o0 e can identify the angular frequency of oscillation of the quantum
particle as w = E/A, or, E = ho (Planck’s relation). Insertion of this result into Eq. (6.5) yields the
time-dependent wave function

P(x,1) = wy(x)e (EME T (6.9)

Since E is real, then the wave function has an amplitude y(x) and a phase exp(—iEt/ k). The
amplitude and phase representation is convenient for many applications. To find the physical
meaning of the real quantity E, we calculate the expectation value of the total energy using the
wave function obtained from the product method.

o iEr ikt ©
(Eioat) = [ ') f”‘(r)(—?%]w(x)f@)dx —ehe hE [y myds = E.
(6.10)

Because the wave function is normalized, that is (y(x) | y(x)) = 1, the constant designated as E is
the expectation value of the total energy.

6.2 The time-independent Schrodinger equation
The time-independent Schrodinger equation is obtained by inserting the wave function obtained
from the product method, Eq. (6.9) into the time-dependent Schrodinger equation (see Eq. 6.2).
One obtains

h2 2

2m dxz

y(x) + U y(x) = Ey(x) (6.11)

which is the time-independent Schrodinger equation. Using the hamiltonian operator, one
obtains

Hy(x) = Ey). (6.12)
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Since H is an operator and E is a real number, the Schrodinger equation has the form of an
eigenvalue equation. The eigenfunctions y,(x) and the eigenvalues E, are found by solving the
Schrodinger equation.

The eigenvalues of the Schrodinger equation, E,, are discrete, that is only certain energy
values are allowed, all other energies are disallowed or forbidden. The energy eigenvalues are
also called eigenenergies or eigenstate energies. The lowest eigenstate energy is the ground
state energy. All higher energies are called of excited state energies.

The solution of the Schrodinger equation and the eigenstate energies and wave functions of a
physical system are of great importance, because the knowledge of y,(x) and E, implies the
knowledge of all relevant physical parameters. It is the purpose of the next sections to get
familiar with the properties of the Schrodinger equation and its solutions.

6.3 The superposition principle
Mathematically speaking the Schrodinger equation is a linear, second order, partial differential
equation. Any linear differential equation allows for the superposition of its solutions. That is, if
VY, and ¥, are solutions of the Schrodinger equation, then any /inear combination of ¥, and ‘P,
are solutions as well. That is, a new solution of Schrdédinger’s equation is given by

Y(x,t) = AV, (x,1) + BY, (x,1) (6.13)

where, 4 and B are real constants. For practical physical problems, the Schrodinger equation has
always more than one solution. Thus, the superposition principle can be applied to all physical
problems in order to obtain a new solution. The new solution ¥(x, £) must be normalized as well,
thatis (VY |¥Y)=1.

6.4 The orthogonality of eigenfunctions
If two eigenfunctions y, = y,(x) and y,, = y,(x) are solutions of the Schrodinger equation and
the two eigenfunctions belong to different energies E, and E, (so that E, # E,), then the
eigenfunctions are orthogonal:

(vilw,) = 0. (6.14)

This equation can be proven by starting with the Schrodinger equation for y,(x) and the complex
conjugate equation for v, that is

n? 2
w4l Y + UV, = E vy, (6.15)
and
n? dr . ] R
w4l Ym T UV = Epwvy, . (6.16)

Pre-multiplication of Eq. (6.15) with y,,* and of Eq. (6.16) with y, and subtraction of the two
resulting equations yields
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S Va5 VYm T Vn > V| = (En - Em)Wn Vin- (6.17)
2m dx dx
Using the identity
d d + d 2« » d?
e AR L e Tl B F‘i’m ~ Vnm ?\Vn (6.18)
and integrating over x yields
n? T od d =« + d T
m I dx ( "y Ym = Wm E‘Vn}dx = (En - Em) _[ Vi Yy dx. (6.19)
—0 —o0
The integral on the left side of the equation simplifies to
o0 +00
d d = * d d = « d
_.[O K(Wn E\Vm ~ Um E\Vn]dx = {\Vn E\Vm ~ WUm E\Vn}_oo (6.20)

This expression is zero due to the normalization condition which requires that y (x — £ 00) = 0.
Hence, we obtain the following condition for the eigenvalues and eigenfunctions

2m

(& = Ep) [T Wpwade = 0. (6.21)

Because E, # E,, this equation can be true, only if
0 %
j_oo v, W, dx = 0 (m # n) (6.22)

which concludes the proof that vy, and v, are orthogonal. Together with the normalization
condition, one obtains

J-oo * & - 0 (m # n) (6.23)
o YmVn N (m = n). .
This result can be also written as

<\|’m| \Vn> = S (6.24)

where J,,, is the Kronecker delta which is defined as

(6.25)

8Wl}’l

0 (m # n)
1 (m = n).
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6.5 The complete set of eigenfunctions

Consider a practical physical problem given by the potential energy U(x, y, z). Assume further
that at least one solution of the Schrodinger equation exists for the potential energy U(x, y, z).
Generally, the number of solutions is large but finite. The solutions of the Schrodinger equation
are designated a set of solutions. Such a set of solutions is a complete set of solutions, if it
contains all possible solutions. If, in addition, each solution of the set is normalized and if the
solutions are orthogonal, then the solutions are called an orthogonal, normal, complete set or,
abbreviated, a orthonormal complete set of solutions. Such an orthonormal complete set of
solutions provides any solution of a physical problem by superposition (linear combination) of
the individual solutions.

Exercise 1: Solutions of the Schridinger equation in a constant potential. Assume that the
potential U(x) is a constant. What are the mathematical functions that are possible solutions of
the one-dimensional Schrodinger equation in such a potential?

Fig. 6.1. Sinusoidal (left) and ex-
ponential (right) solution of the
Schrodinger equation in a con-
stant potential.
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Applications of the Schrodinger equation in nonperiodic structures

7.1 Electron in a constant potential
The wave function of an electron in a piecewise constant potential is shown in Fig. 7.1. The
potential is given by

UI()C) = UI x<L (71)
UH (x) = UH x>L. (72)
U(x)
- 1 | 1I >

Fig. 7.1. Electron wave func-
tion in a constant potential.

Given the fact that the eigenfunctions of the operator d*/dx* (i.e. the x-dependent part of the
Hamiltonian operator in a constant potential) are either sinusoidal or exponentially decreasing
(or increasing) functions, allows us to write the solutions of the time-dependent Schrodinger
equation. Assuming that the energy of the electron is Uy < E < Uy, the solution of the
Schrédinger equation in Region I is given by

P(x,t) = Ae—o) forx <L (7.3)

where 4 is a normalization constant,

ko= 2mE-Up/n? | (7.4)
and
© = E/h. (7.5)

The solution of the Schrodinger equation in Region I1 is given by

W(x,t) = Ae for x> L (7.6)
where
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kK = \2mUy-E)/n? . 7.7)

Insertion of these solutions into the Schrodinger equation allows one to verify that they indeed
are correct solutions of the Schrodinger equation.

The time-dependent oscillatory factor of the wave function (i.e. exp iwf) always appears in
this form. Therefore, we will not be concerned with the time-dependent factor in our subsequent
discussions.

7.2 The infinite square-shaped quantum well
The infinite square-shaped well potential is the simplest of all possible potential wells. The
infinite square well potential is illustrated in Fig. 7.2(a) and is defined as

U(x)

Il
=
|
N~
IA
=
IN

: % L) (7.8)

Ux) = o (|x| > %L) (7.9)

@ 40U oo

—38

U(x)

Fig. 7.2. (a) Schematic illustra-
tion of the infinite square well
_In 0 LD ¥ potential. The solutions of this

potential well are shown in

s terms of (b) eigenfunctions
X
(b) Y2l%) () V22 v, (x), (b) eigenstate energies
\/ E, - E, En, anj (c) probability densi-
Vi(x) LAY ties ¥, "y,
E; * E
Wo(x) WYoWo
E, Ey
-L/2 +L/2 -L2 +L/2

To find the stationary solutions for y,(x) and £, we must find functions for ,(x), which satisfy
the Schrodinger equation. The time-independent Schrédinger equation contains only the
differential operator d/dx, whose eigenfunctions are exponential or sinusoidal functions. Since
the Schrodinger equation has the form of an eigenvalue equation, it is reasonable to try only
eigenfunctions of the differential operator. Furthermore, we assume that y,(x) =0 for | x | > L/2,
because the potential energy is infinitely high in the barrier regions. Since the 3rd Postulate
requires that the wave function be continuous, the wave function must have zero amplitude at the
two potential discontinuities, that is y,(x=+L/2)=0. We therefore employ sinusoidal
functions and differentiate between states of even and odd symmetry. We write for even-
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symmetry states

y,(x) = Acosw (n =0,2,4--- and |x| < %j (7.10)
and for odd-symmetry states
v, (x) = Asinw (n = 1,3,5- and |x|< %j (7.11)

Both functions have a finite amplitude in the well-region (|x| <L/2) and they have zero
amplitude in the barriers, that is

v,(x) = 0 (n =0,1,2- and |x| > %j (7.12)

The shapes of the three lowest wave functions (n =0, 1, 2 ...) are shown in Fig. 7.2(b). In order
to normalize the wave functions, the constant 4 must be determined. The condition (y |y ) =1
yields

4 = J2/L. (7.13)

One can verify that Egs. (7.10) and (7.11) are solutions of the infinite square well by inserting
the normalized wave functions into the Schrodinger equation. Insertion of the ground-state wave
function (n = 0) into the Schrodinger equation yields

2 2
_h_d_ l CcOS ﬂ = EO l COS ﬂ . (714)

Calculating the derivative on the left-hand side of the equation yields the ground state energy of
the infinite square well

2 2
h T
Eh = ——|—| . 7.15
0 2m(LJ (7.15)

The excited state energies (n = 1,2,3...) can be evaluated analogously. One obtains the
eigenstate energies in the infinite square well as

o owr [m+nn P _
E, = M{ 5 } n=0,1,2..). (7.16)

The spacing between two adjacent energy levels, that is £, — E,_, is proportional to n. Thus, the
energetic spacing between states increases with energy. The energy levels are schematically
shown in Fig. 7.2(b) for the infinite square well.

The probability density of a particle described by the wave function v is given by y* vy (2nd
Postulate). The probability densities of the three lowest states are shown in Fig. 7.2(c).
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The eigenstate energies are, as already mentioned, expectation values of the total energy of
the respective state. It is therefore interesting to know if the eigenstate energies are purely
kinetic, purely potential, or a mixture of both. The expectation value of the kinetic energy of the
ground state is calculated according to the 5th Postulate:

(Euma) - <w

Using the momentum operator p = (% /1) (d/dx) one obtains the expectation value of the kinetic
energy of the ground state

2

2m

\Vo> : (7.17)

2
<Ekin,o> = %[%J (7.18)

which is identical to the total energy given in Eq. (7.15). Evaluation of kinetic energies of all
other states yields

2 2
(Exinn) = 2hm [(” JrLl)n} . (7.19)

The kinetic energy coincides with the total energy given in Eq. (7.16). Thus, the energy of a
particle in an infinite square well is purely kinetic. The particle has no potential energy.

Second method: Matching the de Broglie wavelength to the width of quantum well. We next
turn to a second, more intuitive method to obtain the wave functions of the infinite potential
well. This second method is based on the de Broglie wave concept. Recall that the de Broglie
wave is defined for a constant momentum p, that is, for a particle in a constant potential. The
energy of the wave is purely kinetic. In order to find solutions of the infinite square well, we
match the de Broglie wavelength to the width of the quantum well according to the condition

%k(n—i—l) = L n=0,1,2...) (7.20)

In this equation, multiples of half of the de Broglie wavelength are matched to the width of the
quantum well. Expressing the kinetic energy in terms of the de Broglie wavelength, that is

2 2
2m 2m A

and inserting Eq. (7.20) into Eq. (7.21) yields

onr [+ P -
E, = M{ 5 } (n=0,1,2..). (7.22)

This equation is identical to Eq. (7.19) which was obtained by the solution of the Schrodinger
equation. The de Broglie wave concept yields the correct solution of the infinite potential well,
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because (i) the particle is confined to the constant potential of the well region, (i7) the energy of
the particle is purely kinetic, and (iii) the wave function is sinusoidal.

The infinite square shaped quantum well is the simplest of all potential wells. The wave
functions (eigenfunctions) and energies (eigenvalues) in an infinite square well are relatively
simple. There is a large number of potential wells with other shapes, for example the square well
with finite barriers, parabolic well, triangular well, or V-shaped well. The exact solutions of
these wells are more complicated. Several methods have been developed to calculate
approximate solutions for arbitrary shaped potential wells. These methods will be discussed in
the chapter on quantum wells in this book.

7.3 The asymmetric and symmetric finite square-shaped quantum well
In contrast to the infinite square well, the finite square well has barriers of finite height. The
potential of a finite square well 1s shown in Fig. 7.3. The two barriers of the well have a different
height and therefore, the structure is denoted asymmetric square well. The potential energy is
constant within the three regions I, II, and III, as shown in Fig. 7.3. In order to obtain the
solutions to the Schrodinger equation for the square well potential, the solutions in a constant
potential will be considered first.

U(x)
~ [ — 11 -t I —
-y Fig. 7.3. Asymmetric
! square well potential
with well width L and
Up— barrier heights U; and
UIII'
OfF-———-——-- Uy =0
] ]
0 L b

Assume that a particle with energy E is in a constant potential U. Then two cases can be
distinguished, namely £ > U and E < U. In the first case (E > U) the general solution to the time-
independent one-dimensional Schrédinger equation is given by

\V(x) = Acoskx + Bsinkx (7.23)

where 4 and B are constants and

k= \2mE/n? . (7.24)

Insertion of the solution into the Schrodinger equation proves that it is indeed a correct solution.
Thus the wave function is an oscillatory sinusoidal function in a constant potential with £ > U.
In the second case (E < U), the solution of the time-independent one-dimensional Schrédinger
equation is given by

y(x) = Ce** + De™™* (7.25)

where C and D are constants and
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K = —zm(UZ’E) - \/2’”(] ~ K2 (7.26)
n

Again, the insertion of the solution into the Schrodinger equation proves that it is indeed a
correct solution. Thus the wave function is an exponentially growing or decaying function in a
constant potential with £ < U.

Next, the solutions of an asymmetric and symmetric square well will be calculated. The
potential energy of the well is piecewise constant, as shown in Fig. 7.3. Having shown that the
wave functions in a constant potential are either sinusoidal or exponential, the wave functions in
the three regions I (x <0), IT (0 <x <L), and III (x > L), can be written as

yilx) = 4e*1¥ (7.27)
wn(x) = Acoskx + Bsinkx (7.28)
yyq(x) = (dcoskL + BsinkL) o~ xm(r—L) (7.29)

where 4 and B are unknown normalization constants. In this solution, the first boundary
condition of the 3rd Postulate, i. e. yi(0) = yi(0) and yu(L) = ym(L), is already satisfied. From
the second boundary condition of the 3rd Postulate, i. e. yi' (0) = wi/'(0) and yi/'(L) = wim' (L), the
following two equations are obtained

Ax, — Bk = 0 (7.30)
A(KIII coskL — ksinkL) + B(KIH sinkL + kcoskL) = 0. (7.31)

This homogeneous system of equations has solutions, only if the determinant of the system
vanishes. From this condition, one obtains

kL (<L L
tankl = -~ (ZKI + knl) (7.32)

which is the eigenvalue equation of the finite asymmetric square well.
For the finite symmetric square well, which is of great practical relevance, the eigenvalue
equation is given by

tankl = 2 kL kL (7.33)

K212 — 2

where k = k; = k. If K is expressed as a function of k£ (see Eq. 7.26), then Eq. (7.33) depends
only on a single variable, i. e., k. Solving the eigenvalue equation yields the eigenvalues of & and,
by using Egs. (7.24) and (7.26), the allowed energies £ and decay constants «, respectively. The
allowed energies are also called the eigenstate energies of the potential.

Inspection of Eq. (7.33) yields that the eigenvalue equation has a trivial solution kL = 0 (and
thus £ =0) which possesses no practical relevance. Non-trivial solutions of the eigenvalue
equation can be obtained by a graphical method. Figure 7.4 shows the graph of the left-hand and
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right-hand side of the eigenvalue equation. The dashed curve represents the right-hand side of
the eigenvalue equation. The intersections of the dashed curve with the periodic tangent function
are the solutions of the eigenvalue equation. The quantum state with the lowest non-trivial
solution is called the ground state of the well. States of higher energy are referred to as excited
states.

tan kL

2 kL xL
12312
N, End point
i T SO 3\15 % T
== kL
—1 T solution
Fig. 7.4. Graphical solution of the eigen-
27T value equation for a symmetric quantum
a4 well. The function 2kLKL/(K*L* — x?L?) is
the right-hand side of the eigenvalue
44+ equation. The crossing points of the tan-
: gent function and the dashed curve are so-

lutions of the eigenvalue equation. The so-
lution at kL = 0 is a trivial solution having
no practical relevance.

The dashed curve shown in Fig. 7.4 has two significant points, namely a pole and an
end point. The dashed curve has a pole when the denominator of the right-hand side of the
eigenvalue equation vanishes, i. e., when kL = kL. Using Eq. (7.26), it is given by

Pole: KLy, = \mU/R* L (7.34)

The dashed curve ends when k=Q2mU/ hz)l/ 2 If k exceeds this value, the square root in
Eq. (7.26) becomes imaginary. The end point of the dashed curve is thus given by

End point: kL pdpome = V2mU /A% L (7.35)

There are no further bound state solutions to the eigenvalue equation beyond the end point.

Now that the eigenvalues of & and k are known, they are inserted into Egs. (7.30) and (7.31);
this allows for the determination of the constants 4 and B and the wave functions. Thus the
allowed energies and the wave functions of the square well have been determined.

It is possible to show that all states with even quantum numbers (n =0, 1, 2 ...) are of even
symmetry with respect to the center of the well, i. e. y(x) = v (—x). All states with odd quantum
numbers (n=1,3,5...) are of odd symmetry with respect to the center of the well, i. e.
y(x) = —wy(—x). The even and odd state wave functions in the well are thus of the form
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yu(x) = A4y cos[ ky, (x - %) } (forn=0,2,4..) (7.36)
and

yy(x) = Ay sin [kn (x - %ﬂ (forn=1,3,5...). (7.37)

The proof of these equations is left to the reader. The three lowest wave functions of a symmetric
square well are shown in Fig. 7.5.

EA
Ul ———
E2 = /\ /—\ n=2
\/ Fig. 7.5. Schematic illus-
tration of the three lowest
E - n=1

wave functions of the sym-

/\ metric quantum well.
E L n=>0

S
h
=y

Exercise 1: Boundary condition in semiconductor quantum wells. The boundary conditions for
the wave function at an interface between two media I and II are given by yi(x) = yy(x) and yy'
(x) =wu'(x) as stated in the 3rd Postulate. These boundary conditions apply to situations
common in particle physics, in which the particle mass m does not change when going from a
Medium I across a boundary to a Medium II. However, the effective mass (m*) changes as
electrons transfer from one semiconductor to another. This change in effective mass requires a
modification of the second boundary condition and the modified second boundary condition is
given by

1 dy,(x) _ 1 dyy (%) (7.38)
m: dx m; dx '

The first boundary condition, namely yi(x) = yu(x), is still valid and this condition does not need
to be modified.

The modified second boundary condition can be derived from the requirement of a constant
current density at the boundary. The current density of an electron moving with constant velocity
v across an interface is given by J=el ' v, where V is the unit volume. Expressing the current
density in terms of the electron momentum yields J=eV 'p/m". Using the 4th Postulate, a
corresponding quantum mechanical expression is found, i. e.

Classical Quantum mechanical
_ 1 1 nd
eyl P eyt LT y(x)

m m 1 dx
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The quantum mechanical expression elucidates that the current density at an interface is
constant, only if (m*)*1 [dy(x)/dx] is constant across the interface.

A rigorous derivation of the quantum mechanical current density was given by Fliigge
(1971). It is given by

Jo= =y vy - vy (7.39)
2mi

Bastard (1981) first showed that the second boundary condition must be modified in
semiconductor heterostructures according to Eq. (7.38).

Apply the modified boundary condition to an asymmetric semiconductor quantum well structure
and derive the eigenvalue equation. Assume that the effective masses are my , my , and my; in
the first barrier, well, and second barrier region, respectively.

kL | x;L Ky L
* * + *
iy niy My

2.2

k= L* KL ®yL

tank L =

"

L

my; m My

What is the eigenvalue equation for the symmetric semiconductor quantum well with K = K = Ky

*

%
and my = myq ?

tankL =

What is the maximum value for kL, i. e., end point of the dashed curve?

* .2
/\'L‘Endpoim - 2my U /h L

Use the location of the end point to determine a condition for the quantum wells thickness under
which a symmetric quantum well structure has only one bound state.

Tth

Is it possible for asymmetric or symmetric square well structures to have no bound states at all?

L <

Figure 7.6 shows the numerical solutions for bound states in the conduction band and valence
band of an Aly30Gag70As/GaAs square-shaped quantum well. The graph reveals that there is
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only one bound state in the conduction band well for well widths smaller than approximately
50 A. Does this agree with the analytic result of Eq. (7.43)?

E Conduction band well:
A T C 300_|||||||||
E -
1 L Al ,.Ga, -, As/GaAs
AE 550 b 0.30%0.70

E By

: i :

? S 200 -

[} -

£ E E T

= . 150 -

L 20 C

Q -

) A 100

EO,hh AEV C

E. . b, C

Y 0,lh i . 50

<—L4>1 v -
Aleal—xAs LGaAS+ Aleal—xAs 0 C I 1 1 | I | | 1 | | | | 1 | | | | 1 |

0 50 100 150 200
E = (1424 +1.247 xx) eV
g AlLGa As ( ) Valence band well:

AEC=(2/3)AEg L e e I I s o e
AEV=(1/3)AEg

20
*
" e Al Ga, As (0.067 + 0.083 x x) m, »
*
" hh, Al Ga, As (0.45 +0.30 x x) m,,
*
" 1h, Al Ga, As (0.08 +0.057 x x) m,, ~60

Fig. 7.6. Quantized energies of subbands
in the conduction band and valence band
of an Al Ga,  As/GaAs single quantum

Energy (meV)
g
(e

-100

well structure at room temperature. -120

There are different subbands for heavy

holes (hh) and light holes (Ih) in the va- el 50 100 150 500
lence band.

Well width L (A)
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Applications of the Schrodinger equation in periodic structures

8.1 Free electrons

Before considering electrons in the periodic potential of a semiconductor crystal, we first
consider electrons in free space that is in an environment in which no forces act on the particle.
The lack of forces requires that the electrostatic potential, in which the electron propagates, is a
constant. We first consider the propagation of the particle in the classical mechanics picture, then
in the semi-classical picture, and finally in quantum-mechanical wave picture.

The propagation of a particle in the classical picture is described by newtonian mechanics.
An electron with mass m and momentum p = m v has the kinetic energy

2
E = L2 = 2 8.1)
2 2m

A particle with this energy will propagate at a constant velocity as long as no forces act on it.
A semi-classical description of the particle is obtained by taking into account the de Broglie

relationship p = i k. The free electron kinetic energy can then be written as

242
E = hz n’; (8.2)

This description includes the wave-like character of the particle by the wave vector £ while it
preserves the deterministic nature of the classical particle. Equation (8.2) is, therefore, a semi-
classical representation of the propagation of the particle. Generally, the wave vector has
components along the three axes of the cartesian coordinate system, that is k = (kx, ky, k).
Hence k =k =k’ + ky2 + k. Expressing & ° in Eq. (8.2) in terms of its x, y, and z components
gives

2
E = ;l—m(k)% + ky o+ kzz). (8.3)

In k space with the cartesian coordinates kx, ky, and k,, Eq. (8.2) represents a sphere if the
energy E is a constant. The sphere has a “radius” in k-space of (2 Em/h*)"*. Thus the constant-
energy surfaces in k-space of free electrons are spheres. The shape of the constant-energy
surfaces provides information about the propagation characteristics of carriers. A spherical
constant-energy surface indicates that the propagation characteristics are isotropic.

The quantum-mechanical treatment of a free particle is based on the wave function
Y(x, v, z, t) which represents the particle. By introducing the wave function, the deterministic
nature of classical mechanics is lost. The product method allows one to separate the wave
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function into a time-dependent part and a time-independent part. The time-dependent part is
given by the oscillatory term exp [—1(£/7)t ]. The time-independent part is denoted as y(x, y, z).
The complete wave function is given by the product of the two parts. Here, we are interested in
the wave vector and the energy of the wave both of which do not depend on time for a freely
propagating particle. Thus, the wave function wy(x, y,z) must satisfy the time-independent
Schrédinger equation

2

—h—V2w+U\|J = Ey (8.4)
2m

where V = (0/0x, 0/ 0y, 0/0z) and U = U( x, y, z) is the potential energy in the medium in which
the particle propagates. Since we assumed that no forces act on the particle, the potential energy
must be constant. For example, U(x, y, z) = 0. Assuming that the wave representing the particle
propagates along the direction given by the vector 7, the solution of the Schrodinger equation is
given by

y(i) = A&k’ (8.5)

where the kinetic energy of the particle is given by E =/k?/(2 m). Insertion of y(¥) into the
time-independent Eq. (8.4) and using V> = 8>/ & yields that the kinetic energy of the wave as
n* k?

E = o (8.6)

This equation is identical to Eq. (8.2) which was derived by using semi-classical arguments.

We have seen in this section that the propagation of a free particle is describable by the wave
vector k in the semi-classical and in the quantum-mechanical picture. We have also seen that the
surfaces of constant energy of a free particle are spheres in k£ space. In the next section, the
propagation of electrons in the periodic lattice of a semiconductor will be discussed.

8.2 The Bloch theorem

We next consider the propagation of electrons in the periodic potential of a lattice. Consider an
electron propagating along a straight line, for example along the direction of a vector 7 in the
lattice. The electron is then exposed to periodic variations of the potential caused by the charged
nuclei of the atoms forming the lattice and by the electrons of these atoms. The periodic potential
is schematically shown in Fig. 8.1. The potential energy of the lattice is periodic with a period R .
R is the vector of translational symmetry of the lattice as defined in Eq. (8.1). The periodicity of
the potential energy in the lattice can be expressed by

UF) = UGF+nR) for n=1223.. (8.7)
To study the influence of this periodic lattice potential we must consider the influence of this
potential on the quantum stationary states of the conduction electrons. In a constant potential

(i. e. non-periodic potential), the wave function of electrons has the form exp (i k -7), as shown
in the proceeding section.
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u(r)
Fig. 8.1 Schematic illustration
of a one-dimensional periodic
potential caused by equally
spaced atoms in a crystal lat-
tice. The potential is periodic
with period R, that is U (7) =
l l l U(7 +R).
R 2R 3R

~

The propagation of electrons in a periodic potential was considered by Bloch (1928, 1930).
He found that the wave function of an electron in a periodic lattice can be described by

ik -7

\Vnk(’j) = Uy € (3.8)

where u,; has the same periodicity as the periodic potential, that is
U (F) = wgp(F+R) = uy(F+2R) = - (8.9)

According to the Bloch theorem of Eq. (8.8), the wave function of an electron in a periodic
potential consists of two parts, namely a lattice periodic part u,; (), and the wave function of a

free particle, that is exp (i k - 7). The product of both factors is the Bloch wave function, or short,
the Bloch function. The Bloch function plays an important role in solid state physics. Many
theoretical models for example the Kronig—Penney model, are based on the Bloch wave function.
It is important to note that the second factor of the Bloch function retains the same form as for
free particles. That is, the lattice potential modulates the amplitude of the original free electron
wave function through the function u, (7). Using the periodicity of the function u,(7), the

Bloch theorem can be also expressed by

Yk F+R) = () etk (8.10)

where R is the period of the lattice.

We next have a closer look at the lattice-periodic part of the Bloch function, u, (7). This
function has the two subscripts # and k£ which indicate the dependence of the function on »n and
k (Note that the vector arrow is left off the subscript k). Generally the function depends on the
electron wave vector k of the electron. The subscript n of the function is called the band index.
The function u,; has a unique shape for the different energy bands of the semiconductor. For the
conduction band, we will use the subscript c, i. e. u. For the valence band, we write uy.

The Bloch theorem will not be proven here and the interested reader is referred to the
literature (see, for example Ashcroft and Mermin, 1976). We will, however, analyze the Bloch
function near k¥ =0. The function u, (7) is periodic with the period R =|R|. It is therefore

reasonable to assume that u,,(¥) does not vary significantly for |7 | <<|R|. Consequently, the

Bloch function will be dominated by the factor exp (i k-7 ) if |k | <<2m/|R|. That is, in the
regime of small values of %, the electron wave function is practically described by the free
particle wave function. As a consequence, the dispersion relation of a particle in a periodic
potential, E (k), will be parabolic in this regime as well, similar to the parabolic dispersion
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relation of free particles given in Eq. (8.6). For larger k values, the function u,,(7) cannot be

neglected. Significant deviations from the parabolic dispersion are expected in this regime. Our
expectation of a parabolic dispersion near k=0 and significant deviations from the parabolic
dispersion for larger k values will be confirmed in the next section.

8.3 The Kronig—Penney model

The electron wave function in a periodic potential is, as shown in the preceding section, given by
the Bloch function. In this section, we apply the Bloch function to a very simple periodic
potential, namely a one-dimensional square-shaped potential. The calculation will yield the
allowed energy bands and the forbidden energy gaps as well as the E (k) relation for electrons,
i. e. the relation between the energy E and the wave number k& of the electron. The E(k) relation is
called the energy band structure or band structure of the lattice. The Schrédinger equation for a
one-dimensional periodic potential was first solved by Kronig and Penney (1930). The
calculation and the implications of this calculation are therefore referred to as the Kronig—
Penney model.

A Ux)

well potential used for
the Kronig-Penney cal-
~——bh—>| Cc |=— culation. The height of
E the barriers is U, and the
electron energy is de-
noted as E.

—‘* —U, Fig. 8.2. Periodic square
(‘fo

[ I
—
—c 0 +b +a X

|«<—— one period —

A simple one-dimensional potential is shown in Fig. 8.2. The period of the potential is given
by a. The height of the potential energy depends only on one spatial coordinate, namely on x.
The potential energy has a value of U for —c¢ <x <0, and a value of zero for 0 <x <b. The
potential shown in Fig. 8.2 is periodic with a period a and hence

Ux) = Ux+a) = Ux+2a) = -- (8.11)

In order to obtain the electron states in the one-dimensional potential, the time-independent
Schrédinger equation must be solved. Introducing the abbreviations

o> = 2mE/R? (8.12)
and

B2 = 2m(Uy-E)/h? (8.13)

the time-independent Schrodinger equation can be written inside the well as

+ay =0 for 0<x<b (8.14)
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and inside the barrier as

d2\|/

. + B2y = 0 for —c<x<0. (8.15)
dx

Kronig and Penney (1930) used the Bloch wave function of Eq. (8.8) for the wave function y in
the Schrodinger equation. Insertion of the Bloch wave function into the Schrédinger equation
and calculating the second derivative with respect to x, i. e. d*/dx?, yields

2
d—uz”k+2ikdu—”k—k2unk + auy, = 0 for 0<x<b (8.16)
dx
and
dzunk . dunk 2 2
—2+21kT+k unk +l3 unk = 0 for —c<x<0 (817)
dx

where k=|k| and k¥ was assumed to be pointed along the x direction. The solution of the
Schrodinger equation inside the well and inside the barrier are oscillating exponential functions
and exponentially decaying functions, respectively. Recall that exponential functions are
eigenfunctions of the Schrodinger equation. The solutions are given by

uy(x) = Ae@Fx 4 peilathx for 0<x<b (8.18)
and

uy(x) = CeP70x¥ o pe(BHibx for —c<x<0 (8.19)
where A, B, C, and D are four unknown constants. The four constants can be determined by
introducing appropriate boundary conditions. At the two boundaries of the potential, i. e. at x =0

and x = b, the wave function and its derivative must be continuous, that is u,;(x) and du,(x) / dx
must be continuous. These boundary conditions yield the four equations:

Continuity of u,; atx=0: A+ B = C+ D (8.20)
Continuity of u, at x = 0: ia (A — B) =B (C - D) (8.21)
Continuity of u, at x = b: Ael®b 4 peTiob _ ika B (C e Py p eBc) (8.22)

Continuity of u,; atx=5b: ia (A e® _ B e_i“b) = chp (C e P _p eBC) (8.23)

This homogeneous system of linear equations has the four unknowns 4, B, C, and D. The system
has non-trivial solutions, only if its determinant vanishes. This condition can be expressed as
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1 1 -1 -1
1o —ia -B B
it ol _ ikape _ oikatpe = 0 (8.24)
ia eiotb ia eiotb B eika—Bc B eika+Bc
Evaluation of the determinant yields the condition
B2 — a2
sinh (Bc¢) sin (ab) + cosh(Bc) cos(ab) = cos(ka). (8.25)

The left side of the equation is a function of E since o= o(E) and 3 =B(F) as defined in
Egs. (8.12) and (8.13). Denoting the left side of the equation as L(E), the condition of a
vanishing determinant is given by

. L(E) = cos(ka) | (8.26)

where the function L(F) is given by

B2 — o2
L(E) T“B sinh (B ¢) sin (o b) + cosh (B¢) cos (a b)

_ Uy-2E .h\/sz_E J.(/szb] .
2\/EU0_E2 sin ( 2 Uy ) c| sin 2 (8.27)
+ cosh(\/zh—gq(UO —E) CJ cos[ /Zh—;nE bJ

Equation (8.26) has a solution, only if | L(E) | < 1 because the cosine function on the right-hand
side of the equation is limited to values <1. We will next discuss the function L(E) and
differentiate between the regimes in which L(E) > 1 and L(E) < 1.

The function L(E) is illustrated in Fig. 8.3. L(E) is an oscillating function whose amplitude
decreases with increasing energy. For values of L(E) > 1, Eq. (8.26) has no solution. Therefore
the Schrodinger equation has no solution for the range of energy which yield L(E) > 1. These
ranges of energy, for which the Schrédinger equation has no solution, are the forbidden energies
of the periodic potential considered here. We call the ranges of forbidden energies the forbidden
energy gap of the one-dimensional periodic potential. On the other hand, solutions of the
Schrodinger equation are obtained in those ranges of the energy, for which L(E) < 1. We call
these ranges of energies the allowed energy bands of the one-dimensional periodic potential. We
thus see that allowed and forbidden ranges of energy, which have been obtained in the previous
section from considerations of the chemical bond, also follow from the solution of the
Schrodinger equation in a periodic potential.
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A L(E)
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As a simple test of Egs. (8.26) and (8.27), we assume that the thickness of the barrier regions
are ¢ = (0. Then a = b and the function L(E) is given by

L(E) = cos(\/2mE/h2 bj. (8.28)

Insertion of this result into Eq. (8.26) and using a = b yields

242
E = hk . (8.29)
2m

Thus we have recovered the free particle dispersion relation of Eq. (8.2) in the absence of a
periodic potential.

The Kronig—Penney model not only provides the allowed and forbidden bands in a periodic
potential, but also the dispersion relation E(k) of an electron propagating in the periodic
potential. To derive an analytic form of the dispersion relation, we use the good linearity
exhibited by L(E) within the allowed bands. Figure 8.3 shows a good linearity especially for the
allowed band with the lowest energy. If the center of the lowest band is denoted as Ey and the
bandwidth of this lowest band as 2 AE), then the linearized function L(E) is given by

L(E) = - AIIE (E-Ep) (8.30)

0

For the next higher energy band, i. e. the n = 1 band, the function L(E) crosses the band in the
opposite direction. The function L(E) is then given by

L(E) = Az (E-E). (8.31)

1

For the nth band, the function L(FE) is given by
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LE) = (-1 AEL (E-E,) for n=012.. (8.32)

n

Using the linearized forms of L(E) in Eq. (8.26) yields the dispersion relation of an electron in a
periodic potential. We obtain for the lowest band

E = Ey — AE cos ka (8.33)

For the next higher band, the dispersion relation is given by
E = E; + AE|coska. (8.34)

For the nth band, the dispersion relation is given by

E = E, + (1" AE, cos ka for n=0,1,2.. (8.35)

< 15 Brillouin »/<«2"4 Brillouin >« 3" Brillouin »
zone zone zone Fig. 8.4. Dispersion relation
E(k) of a one-dimensional
lattice of a period a. The
dash-dotted line represents
the dispersion relation of a
free electron.
N
>
20 7
2 i forbidden gap
53 /.
Free-electron
dispersion allowed band
i ¢/ .
A forbidden gap
/ allowed band
0 T 2n 3T Wave vector k — =
a a a

The dispersion relations of the three lowest bands are shown schematically in Fig. 8.4. The
dispersion relation is shown only for positive £ values. Note that the dispersion relation is an
even function due to the even characteristic of the cosine function in Egs. (8.33) to (8.35). Also
included is the parabolic dispersion relation (dash-dotted curve) of a free particle. Comparison of
the calculated dispersion relation in the one-dimensional potential and the parabolic dispersion
relation are very similar around & = 0. This is an important result. It shows that an electron in a
periodic potential has, near £ = 0, a similar dispersion relation as a free particle, i. e. a parabolic
dispersion relation. The comparison also reveals that significant differences between the free
particle dispersion and the periodic potential dispersion exist at and near k= +n/a, +2n/a ...
that is, when half of the particle wavelength (A = 2r/k) or integer multiples of one half
wavelength is equal to the period of the one-dimensional lattice. This condition is exactly the

Chapter 8 — page 8



Chapter 8 - Applications of the Schrédinger equation in periodic semiconductor structures

Bragg reflection condition. Using 6 =90 ° in Eq. (8.6b), the equation reduces to nA =2a (for
n=1, 2,3 ...) which is identical to the condition stated above. (For a one-dimensional lattice, a
normal incidence angle, 6 = 90 °, must be chosen since particles propagate in normal direction to
the potential barriers).

The k interval —n/a < k < n/a is called the first Brillouin zone. The adjacent intervals
ranging from —2n/a to —nt/a and from n/a to 2/ a are the second Brillouin zone of the one-
dimensional periodic potential, and so on.

Figure 8.5 shows the free particle dispersion (dotted line) and the dispersion of a particle in a
periodic potential (solid line). Those parts of the dispersion relation that resemble the free
particle dispersion relation are shown as solid lines. Inspection of Fig. 8.5 reveals the similarity
of the two dispersion relations except for those wave vectors which are integer multiples of 7t/ a.

N
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The dispersion relation of a real three-dimensional semiconductor lattice can be much more
complex than the simple one-dimensional model considered above. In semiconductors, the
dispersion relation depends on the propagation direction of the electron, since the atomic
structure and hence the periodic potential depends on the propagation direction of the electron.
The dispersion relation for charge carriers in solids is called the energy bandstructure of the
solid. The bandstructure of two important semiconductors, GaAs and Si are shown in Fig. 8.6
(Chelikowski and Cohen, 1976). The center of the Brillouin zone at k=0 is denoted by the
Greek letter I' (Gamma). In GaAs the minimum of the conduction band and the maximum of the
valence band occur at the I" point. Semiconductors in which these two band extrema occur at the
I' point are called direct-gap semiconductors. In direct-gap semiconductors, the electron
momentum (p = % k) does not change for transitions from the conduction band minimum at k=0
to the valence band maximum at £ = 0. In Si, the minimum of the conduction band occurs on the
A axis, whereas the maximum of the valence band is located at the I" point. Semiconductors in
which the minimum of the conduction band occurs at a different £ value than the maximum of
the valence band, is called an indirect-gap semiconductor. Transitions between the band
extrema preserving the momentum of the carrier are impossible in such indirect-gap
semiconductor.
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Fig. 8.6 Dispersion relation (band structure) for electrons and holes in the conduction
and valence band within the first Brillouin zone for GaAs and Si.

Figure 8.6 reveals that a semiconductor may have several conduction-band minima and
valence-band maxima. The energy difference between the lowest conduction band minimum and
the highest valence-band maximum is called the fundamental energy gap or fundamental gap of
the semiconductor. The fundamental gaps of GaAs, InP, Si, and Ge are shown in Fig. 8.7 as a
function of temperature (Thurmond, 1975; Laufer et al., 1980; Pearsall et al., 1983). For a
discussion of the physics of the temperature dependence of the energy gap, the reader is referred
to the literature (Cohen and Chadi, 1980). Here we restrict ourselves to a phenomenological
description of the temperature dependence of the energy gap. With good approximation, the
fundamental gap can be described by a parabolic dependence on temperature (Varshni, 1967)

(xTZ

T+

E,(T) = Eg(T=0K) - (8.36)

where E, (T =0K) is the gap energy at zero temperature and o and 3 are the two parameters
describing the parabolic dependence of the gap energy on temperature. The values of a and 3 for
GaAs, InP, Si, and Ge are given in the inset Fig. 8.7.
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Fig. 8.7. Fundamental energy
gap of GaAs, InP, Si, and Ge
as a function of temperature.
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8.4 The effective mass
The influence of the periodic potential experienced by an electron propagating in an atomic
lattice can be taken into account by the elegant and powerful concept of the effective mass. As
will be seen, the mass of a charge carrier, e. g. the mass of an electron of my=9.11 x 103! kg, is
modified to an effective value m* due to the influence of the periodic potential. By this
modification, the entire influence of the periodic potential is taken into account. That is,
electrons in the periodic potential with the effective mass m" can be treated as free electrons.

To derive the effective mass of a charge carrier in a periodic potential, we use the definition
of the effective mass in Newton’s second law and then apply this definition to a quantum-
mechanical wave-like particle whose dispersion relation is assumed to be known. Newton’s
second law defines the mass of a particle in terms of the acceleration a of the particle caused by
a force F' acting on the particle.

F = ma (8.37)

The acceleration can be expressed as a change of the group velocity of the quantum-mechanical
wave representing the particle, that is a = (d/df) v = (d/df) do/dk, where ® is the angular
frequency of oscillation of the wave. Assuming that the particle has only kinetic energy, the

energy of the particle is given by Planck’s relation £ = 7 ®. Hence the mass in Eq. (8.37) can be
expressed as

1 d°E 1 d&’E dk
hoodedk hoogr?  dr

a =

(8.38)

Using the de Broglie relation (p = /i k), Newton’s second law can be expressed as
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P 9 (8.39)
dt dr
This relation is true for a free electron. It is also valid for electrons in any potential including the
periodic potential. Insertion of Eq. (8.39) into Eq. (8.38) yields the acceleration as a function of
the E-versus-k relation

2
o = L 4E g (8.40)
n? dk?

Comparison of this equation with Newton’s second law (a = F'/ m) allows us to express the mass
of an electron in a periodic potential as

. 7’
m = —dzE/dkz (8.41)

The mass given by Eq. (8.41) is called the effective mass of a charge carrier. Depending on the
nature of the periodic potential, the effective mass may be lighter or heavier than the free
electron mass.

According to Eq. (8.41), the effective mass is inversely proportional to the second derivative
of E with respect to k, that is, the effective mass is inversely proportional to the curvature of
the dispersion relation. A strongly curved E(k) relation implies a small effective mass, whereas
a weakly curved dispersion relation indicates a heavy effective mass. In the case of a parabolic
dispersion relation, the second derivative of £ with respect to k is a constant. As a consequence,
the effective mass is a constant as well, that is, the effective mass has a constant value
independent of energy.

\ Parabolic /
\ DONE
\ﬁ pproximaion /I Fig. 8.8. Dispersion relation of a
one-dimensional lattice with posi-
v dE / tive effective mass (d?E/dk>>0)
di? near the zone-center, and negative
1 effective mass (d2E/dk?<0) near
AE the zone boundary. Close to the
i zone center, the dispersion rela-
tion can be approximated by a pa-
rabola.

Energy E

—Tt/a 0 T/a
Wavevector &

Generally, the effective mass depends on energy. Figure 8.8 illustrates the basic shape of the
dispersion relation within the first Brillouin zone. The curvature of the E(k) relation depends on
k and therefore also on E. In the vicinity of the zone center (k = 0), the second derivative of E(k)
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is positive and consequently the effective mass is also positive. For increasing values of 4, the
curvature of E(k) deviates from the parabolic dispersion (dashed line in Fig. 8.8) and the
curvature becomes negative close to the edge of the first Brillouin zone. Hence, the effective
mass assumes negative values as well.

What is the physical meaning of a negative effective mass? Let us consider an electron with
k=0, which is accelerated by a constant force F. Close to the Brillouin-zone center, the electron
behaves identical to a free electron with the effective mass m*. As the electron assumes
increasingly higher values of £, the interaction with the lattice becomes stronger. At a k value of
k=m/(2a), that is half way between zone center and zone edge, the curvature of E(k) is zero,
i. e. the effective mass is infinity heavy. This means that the velocity of the electron cannot be
further increased by the force F. That is, the change in group velocity (d*w/dk%) equals zero at
the half-way point. As the zone boundary is approached, the mass becomes negative, i. e. the
electron is accelerated in the opposite direction of the force . When the zone boundary is
reached, the group velocity of the particle equals zero, since dw/dk = (1/%) dE/dk = 0. Even
though the group velocity of the electron is zero, the momentum of the electron is finite and it is
given by p = i k. The electron can be thought to be represented by two waves, one propagating in
positive k direction and a second identical wave propagating in the negative k direction. Thus the
electron is represented by a standing wave with a zero group velocity.

The periodic potential of a crystal depends on the propagation direction. As a consequence,
the dispersion relation and the effective mass also depend on the direction of propagation.
Generally, the effective mass is a tensor and not just a scalar. Newton’s second law is then given

by

* * *
F, Myx Mxy Myy ay
F : : : 8.42
y = Myx  Myy Ty dy (8.42)
F * * * a
z Mzx Mgy Mgy z

Consider a force along the x direction acting on an electron. Depending on the band structure
of the semiconductor, the electron may be accelerated along a direction normal to the x direction,
e. g. the y direction. In analogy to Eq. (8.38), the acceleration along the y direction is given by

2 2
0 = L CE L OE Ok (8.43)
h Oky Ot h Oky Oky Ot
We assumed that the force is directed along the x direction and Eq. (8.39) is then given by
dp dk
F, = —% = h —2. 8.44
x dt dr (8.44)
Insertion of Eq. (8.44) into Eq. (8.43) allows us to identify the tensor element m,,* as
-1
2
my = 0t | L (8.45)
Oky Oky
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The first subscript x of the mass my,* refers to the direction of the force, whereas the second
subscript refers to the direction of the acceleration.

For semiconductors with an isotropic dispersion relation with a band minimum at £ = 0, the
effective mass tensor has only diagonal tensor elements and no off-diagonal elements,
i. e. mii* =0 for i #j. In the case of an isotropic semiconductor it is mx* = myy,* = m,,* and thus
the effective mass tensor reduces to a scalar. As an example, we consider GaAs which has an
isotropic band structure with a conduction band minimum at £=0. As a consequence, the
effective mass is a scalar, i. e. independent of the propagation direction.

We next consider the effective mass in the Kronig—Penney model. The dispersion relation in
the Kronig—Penney model is given by Egs. (8.33) to (8.35). The dispersion of the lowest band is
given by

E = Ey — AEycoska. (8.46)

Expanding the cosine function into a power series yields

(ka) . (ka)!

E = E() — AEO 1 — o + A — e | (847)
\ Parabolic I \
\ approximation !

Fig. 8.9. Parabolic dispersion
(dashed curve) and deviations
from parabolic dispersion at
high energies. The non-parabolic
dispersion leads to an increase of
the effective mass at high ener-
gies.

The dispersion relation is schematically shown in Fig. 8.9. Near k = 0, the term (ka)* dominates
and the dispersion relation is parabolic. For larger values of &, the term (ka)* cannot be neglected
and the dispersion deviates from the parabolic dependence. Consider now the dispersion relation
near the energy minimum, i. e. near the bottom of the band. In the vicinity of k=0, the term
(ka)'/4! and all higher terms can be neglected. Using Eq. (8.41), the effective mass near the
bottom of the band is given by

my = ——— (8.48)

where the subscript “0” in mo* indicates that this effective mass is valid in the vicinity of the
zone center near k=0. The effective mass at the bottom of a miniband is denoted as the
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confinement mass. Equation (8.48) further shows that the effective mass is heavy for small
bandwidths AE). For thick and / or high barriers in the periodic potential, the bandwidth becomes
very small. In such potentials, the tunneling probability through the barrier becomes small as
well. That is, the transfer of electrons from one well to the next well is strongly impeded by the
thick and / or high barriers. This situation can be understood in terms of a large effective mass.
Electrons with a large effective mass cannot propagate easily in a periodic potential.

The minimum of the band whose dispersion relation is given by Eq. (8.47) occurs at an
energy E = Ep— AEy. At the bottom of the band the effective mass is given by Eq. (8.48).
However, at higher energies, the dispersion relation is no longer parabolic and, as a consequence,
the effective mass changes. The energy dependence of the effective mass plays an important role
in several areas of semiconductor heterostructures. For example, the quantization of energy
levels in quantum wells depends on the effective mass of the carriers. To calculate the change of
the effective mass due to the non-parabolicity of the band structure, we employ the terms (k a)
and (ka)* in the dispersion relation of Eq. (8.47) and neglect all higher-order terms. The term
(ka)* in Eq. (8.47) has the opposite sign of the term (k a)* and therefore the former term reduces
the curvature of the dispersion relation. Consequently, the effective mass will increase for higher
energies. Calculation of the effective mass from the dispersion relation by using Eq. (8.45) yields

m = m [1 + E_(EA(%;AEO)j (8.49)

where mo* is the effective mass at the bottom of the band as given in Eq. (8.48). The bottom of
the band occurs at the energy Eo— AEy. The bandwidth of the band is 2 AEy. Hence Eq. (8.49)
indicates that the effective mass increases over my* for higher energies. Equation (8.48) shows
that the approximation m* = my* is valid near the bottom of the band, specifically for energies
[E—(Ey—AEy)] << AE,.

Exercise 1: The Kronig—Penney model, the dispersion relation, and the effective mass. A
periodic potential consists of 1.0 nm wells and 2.0 nm barriers with a barrier height of 200 meV.
Using the Kronig—Penney model, calculate the number of bands and the respective dispersion
relations, assuming that the carrier mass in the absence of the periodic potential is the free
electron mass m.. Using appropriate approximations, calculate the band widths and the effective
masses in the bands. Explain the trend found for AE, and m.* as the band index » increases.

How do properties of the bandstructure, i. e. the number of bands, their widths, and the effective
masses change, as the barrier width decreases? How does the bandstructure of the lowest band
change as the barrier width increases? What is the value of the lowest band width and effective
mass in the limit of infinitely thick barriers?
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Exercise 2: The effective mass in superlattices. Semiconductor superlattices are periodic
structures consisting of two different semiconductors. Semiconductors already have bands
(e. g. the conduction band) and thus we denote the newly formed bands as “minibands”.
Consider an Al,Ga; As/GaAs superlattice with a period of 4.0 nm and a barrier width of 2.0 nm
and height of 250 meV. Calculate the properties of this superlattice including the number of
minibands, energies, band widths, and effective confinement masses. Assume that the effective
mass in bulk GaAs and Al,Ga;_,As is m.* = 0.067 x m..

Next consider that the electrons move in parallel direction to the layers of the superlattice.
What effective mass do you expect for motion parallel to the superlattice layers? Is transport in
these superlattice structures isotropic or anisotropic?

Exercise 3: Comparison of photon and electron momenta. Assume that radiative recombination
processes occur in GaAs. Calculate wavelength and momentum of a photon with energy 1.42 eV.
In optical transitions, momenta must be conserved. Compare the photon momentum with the
momentum of an electron located at the boundary of the first Brillouin zone. What conclusions
can be drawn from this comparison?
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8.5 The Bloch oscillation
In the preceding Section, we have learned that an energy gap occurs at the electron wave number
assumes values of k = + n/a, +2n/a ... . We will next discuss the physical interpretation of
these energy gaps. To do this we consider the electron k value of m/a. At this value of k, the
electron de Broglie wavelength is given by A =2 a.

When an electron propagates in the periodic Kronig—Penney potential, it must tunnel through
the barriers. The tunneling probability through a barrier is always less than one, i. e. T< 1 where
the tunneling probability through one barrier is denoted as 7. Thus the electron wave gets
partially reflected upon propagation through one barrier.

If the electron wave propagating in the Kronig—Penney potential gets indeed partially
reflected at each barrier, then the interference of the partially reflected waves is of importance.
The difference in path length for waves partially reflected from two adjacent barriers (or crystal
planes) is 2 a. Since the electron wavelength is A = 2a as well, all partially reflected waves
interfere constructively with themselves. This makes the forward propagation of waves with
k=m/a impossible. As a consequence, the electron wave undergoes what is called Bragg
reflection. Bragg reflection is an elastic process in which the magnitude of k is conserved but the
direction of k is reversed. Similar considerations hold true for electrons with k=+m/a,
+2n/a....

The Bragg reflection can also be understood by taking into account the crystal wave number
G. When the electron reaches the zone boundary, it undergoes Bragg reflection and the &k’ vector
of the reflected electron is given by the Bragg reflection condition

K o= k+G = k-2% - _T (8.50)
a

a

Hence, the electron is Bragg reflected to the negative side of the zone boundary located at
k =— m/a, without change in total energy.

Now consider an electron that is subjected to an electric field. The electric field exerts a force
F=—eE on the electron. Assume that the electron is initially not in motion, i. e. £ = 0. Upon
application of the electric field, the k& value of the electron increases from k& = 0 to w/a. At this
value of k, Bragg reflection occurs, and the electron assumes a k value of —/a. Then the
electron is again accelerated to k=m/a. At this point, the electron again undergoes Bragg
reflection and the cycle starts from the beginning. The process described above is called the
Bloch oscillation of the electron in an energy band of a solid state crystal.

Next we consider the propagation of the electron along the & axis. Recall that the group
velocity is given by

do 1 dEf
_ o _ 1 dE 8.51
Ver dk n dk (8.51)

The rate of kinetic energy gain of an electron propagating along the x axis in an electric field is
given by
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d& = d(F x) = —eE £ = —eEvy . (8.52)
de dr dr &
With Eq (8.51) we can write
e Ak, A (8.53)
dt dk dt dt

Equating Eqgs. (8.52) and (8.53) yields the rate of change of the k value of the electron according
to

L ! (8.54)
dr h

which is called the acceleration theorem of electrons in a periodic potential accelerated by an
electric field. Note that in a constant electric field, the rate of change for k, i. e. dk/dt, is a
constant. Thus, the electron “moves” along the k axis at a constant rate.

Exercise 4: The period of Bloch oscillations. Show that the period of the Bloch oscillation is
given by

2nh

“lela (8.55)

T; Bloch

Scattering mechanisms other than Bragg scattering have not been considered in the above
discussion. Any inelastic scattering mechanism, e. g. phonon scattering, reduces the electron
momentum and one can assume that k£ = 0. Thus it is difficult for the electron to complete the
entire cycle of the Bloch oscillation. Typical inelastic scattering times are 10 s = 10 ps at low
fields and 10" s = 0.1 ps at high fields.

Exercise 5: Bloch oscillation. Calculate the period of the Bloch oscillation for ¢ = 0.5 nm and
&= 1000 V/cm. Compare the period with typical inelastic scattering times. What conclusions do
you draw from the comparison?

If the electron could reach the zone boundary, it could also overcome the energy gap to the next
higher band and then propagate at larger k& values in the next higher band. However, such a
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transition would require additional energy which would have to be provided. Therefore, Bragg
reflection is the more likely process if the electron ever reaches the zone boundary. Bloch
oscillations are a theoretically postulated concept but such Bloch oscillations have not been
observed experimentally.

Exercise 6: Bloch oscillation. Figure 8.10 shows the dispersion relation, the electron
momentum, and the group velocity along the x direction as a function of time, when an electric
field along the negative x direction) is applied to a crystal containing free electrons. Explain
Figs. 8.10 (b) and (c). The dashed line in Fig. 8.10 (c) indicates a linear dependence of the
group velocity near v, = 0. Explain why v,, depends linearly on ¢ near k = 0.

(a)

(b)

max

| £ E = Ey—AE, cos (ka)
[} |
2AE {: :} Allowed band
| |
kmin: —T/a 0 kmax: T/a k

1 ]

L L 1

N SN

N B

C linear change of vgr versus ¢

Fig. 8.10. (a) Dispersion
relation for electrons in
first Brillouin zone of a
one-dimensional periodic
potential. (b) k& versus
time and (c) group veloc-
ity versus time during
Bloch oscillation.
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8.6 Semiconductor superlattices

As shown in the Kronig—Penney model, bands of allowed states and bands of disallowed states
form for electrons propagating in a periodic potential. Semiconductor superlattices are periodic
semiconductor structures consisting of two semiconductors with different bandgap. Usually, the
periods of semiconductor superlattices are longer as the lattice constant of the constituent
semiconductors. As a result, the allowed bands have a narrower width and these bands are
therefore called minibands. A miniband in the conduction band of a semiconductor superlattice
is schematically shown in Fig. 8.11 (a).

In the absence of an electric field, the energy states of carriers in a superlattice can be
calculated by the Kronig—Penney model, taking into account the modified boundary conditions
for semiconductor structures as discussed in the preceding section.

However, if an electric field is applied to the semiconductor structure, transport can either
proceed via miniband conduction or by sequential tunneling depending on the magnitude of the
electric field.

Consider the case in which the energy drop due to an electric field per period of the
superlattice is less than the miniband width, i. e.

leEa| < 2AE (8.56)

where | e E a | is the energy drop occurring within one period of the superlattice and 2AFE is the
width of the miniband. In this case, electrons will propagate within the miniband formed by the
superlattice. This situation is schematically shown in Fig. 8.11(b)

Next consider the case in which the energy drop due to the electric field per period of the
superlattice is larger than the miniband width, i. e.

leEa| > 2AE . (8.57)

In this case, the miniband no longer exists since the structure has lost its strict periodicity.
Discrete levels rather than a miniband will form in each quantum well. Electrons propagate in
the superlattice by sequentially tunneling through the barriers rather than by miniband
conduction. This situation is shown in Fig. 8.11(c). The sequence of energy levels is frequently
referred to as a Stark ladder, reminiscent of the Stark effect which describes the change of
energy levels under the influence of electric fields.

The transport parallel to the superlattice layers is not affected by the superlattice structures
since the periodic potential felt by an electron is either the potential of the well material or that
of the barrier material, depending on the layer of propagation. Most carriers will propagate in the
well layers due to the lower energy of the well layers.
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2AE I } Miniband
b I | I I I I I I
Ec(x)

a) E=0

b) € # 0, miniband conduction

¢) E # 0, sequential tunneling Ec()

eEa > 2AE \I\

eEa

fe—— d —

Fig. 8.11. Semiconductor superlattice band diagram in T~
the (a) absence and (b, c¢) presence of an electric field.
Depending on the strength of the electric field,
miniband conduction or sequential tunneling is the
transport mechanism for carriers in the superlattice. Ec)
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