Gibt es einen Mittelwert exponentiellen Wachstums?

Dipl.- Ing. Björnstjerne Zindler, M.Sc.

www.Zenithpoint.de

Erstellt: 18. Dezember 2020 – Letzte Revision: 18. Dezember 2020

Inhaltsverzeichnis

3 Der Mittelwert $M_{\rm exp}$	
--------------------------------	--

Literatur

[001] Keine für vorliegenden Text.

1 Einleitung

[001]ff.

Ein exponentielles Wachstum der Form $y=b^x$ für ein $b\in P$ gibt es in der realen Welt viele praktische Beispiele. So folgt das wiederholte Falten eines Blattes einem $b_1=2$ und die Kettenreaktion einiger spaltbarer Isotope einem $b_2=3$. Ein fallender Schneekristall kann dem $b_3=5$ genüge tun, bis letzten Endes eine Lawine zu Tal rollt. Es ist zu bemerken, dass je höher i wird, desto seltener dazugehörige natürliche Ereignisse im Makrouniversum vorkommen. Bleibt dann die Frage nach dem Mittelwert M_{exp} aller gewichteter Werte von b_i , so dass gilt:

$$M_{\text{exp}} = \frac{S_{\text{exp}}}{\sum_{i=1}^{\infty} a_i} \approx \frac{\lim_{n \to \infty} (a_1 \cdot 2 + a_2 \cdot 3 + a_3 \cdot 5 + a_4 \cdot 7 + \dots + a_n \cdot b_n)}{\lim_{n \to \infty} (a_1 + a_2 + a_3 + a_4 + \dots + a_n)}$$

Noch interessanter scheint $\sum_{i=1}^{\infty} a_i$ und dessen Einzelwerte a_i zu sein. Leider ist weder Zähler, Nenner noch Quotient bekannt. Deshalb dürfte die anfängliche Betrachtung von S_{\exp} zielführender sein.

2 Die Summe S_{exp}

Gesucht ist die Summe $S_{\rm exp}$ aller exponentiellen Wachstumsvorgänge obig genannter Bedingungen.

$$S_{\text{exp}} = \lim_{n \to \infty} (a_1 \cdot 2 + a_2 \cdot 3 + a_3 \cdot 5 + a_4 \cdot 7 + \dots + a_n \cdot b_n)$$

Die Primzahlen b_i lassen sich substituieren:

$$S_{\text{exp}} = 2 \cdot a_1 + a_2 \cdot (2 \cdot 1 + 1) + a_3 \cdot (2 \cdot 2 + 1) + a_4 \cdot (2 \cdot 3 + 1) + \dots + a_n \cdot (2 \cdot (n - 1) + 1)$$

 \Rightarrow

$$S_{\text{exp}} = 2 \cdot a_1 + a_2 + a_3 + a_4 + \dots + a_n + \underbrace{a_2 \cdot 2 + a_3 \cdot 4 + a_4 \cdot 6 + \dots + a_n \cdot 2 \cdot (n-1)}_{\hat{S}_{\text{exp}}}$$

Es wird \hat{S}_{exp} extrahiert vorerst ohne Koeffizienten.

$$\hat{\hat{S}}_{\text{exp}} = 2 \cdot \lim_{n \to \infty} \sum_{i=2}^{n} (i-1) = 2 \sum_{i=2}^{\infty} (i-1) = +\infty$$

Damit $S_{\rm exp}$ endlich wird, muss $\hat{S}_{\rm exp}$ konvergieren. Dazu ist eine Vorschrift nötig, die hier schneller konvergiert, als ein beliebiges exponentielles Wachstum. Das ist die reziproke Fakultät. Dann folgt:

$$\hat{S}_{\text{exp}} = 2 \cdot \lim_{n \to \infty} \sum_{i=2}^{n} \frac{i-1}{(i-1)!} = 2 \sum_{i=2}^{\infty} \frac{i-1}{(i-1)!} = 2 \cdot e^{1}$$

 \Rightarrow

$$S_{\text{exp}} = a_1 + \underbrace{\lim_{n \to \infty} \left(a_1 + a_2 + a_3 + a_4 + \dots + a_n \right)}_{\sum_{i=1}^{\infty} \frac{1}{(i-1)!}} + 2 \cdot e^1$$

Wobei nun gilt:

$$\sum_{i=1}^{\infty} \frac{1}{(i-1)!} = e^1$$

Sowie:

$$a_1 = \frac{1}{(1-1)!} = 1$$

 \Rightarrow

$$S_{\rm exp} = 3 \cdot e^1 + 1 \approx 9,155$$

3 Der Mittelwert $M_{\rm exp}$

Ist ermittelbar durch:

$$M_{\text{exp}} = \frac{S_{\text{exp}}}{\sum_{i=1}^{\infty} \frac{1}{(i-1)!}} = \frac{3 \cdot e^1 + 1}{e^1}$$

$$\Rightarrow$$

$$M_{\rm exp} = e^{-1} + 3 \approx 3,368$$

4 Die Koeffizienten a_n

Sind definiert durch:

$$a_n = \frac{1}{(n-1)!}$$

 \Rightarrow

n	n-1	(n-1)!	$\frac{1}{(n-1)!}$	P_n	$\frac{P_n}{(n-1)!}$	$\frac{100\%}{S_{\text{exp}}} \cdot \frac{P_n}{(n-1)!}$
1	0	1	1,00000	2	2,00000	21,846%
2	1	1	1,00000	3	3,00000	32,770%
3	2	2	0,50000	5	2,50000	27,308%
4	3	6	0,16667	7	1,16667	12,744%
5	4	24	0,04167	11	0,45834	5,0065%
\sum	-	-	2,70834	-	9,12501	99,678%
\oslash	-	-	3,36923			-

Die Summe der Koeffizienten konvergiert:

$$\sum_{i=1}^{\infty} \frac{1}{(i-1)!} = \sum_{j=0}^{\infty} \frac{1}{j!} = e^1$$

Exponentielle Wachstume ab einem Wert von P>11 sind damit äußerst selten zu beobachten.