{VERSION 2 3 "IBM INTEL NT" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 } {CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } {CSTYLE "" -1 261 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } {CSTYLE "" -1 265 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 266 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 267 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "No rmal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 257 "" 0 "" {TEXT 267 0 "" }}}{EXCHG {PARA 256 " " 0 "" {TEXT 256 56 "Fourier- Analyse eines antimetrischen Gau\337sche n Impulses" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 256 "" 0 " " {TEXT 257 39 "Dipl.- Ing. Bj\366rnstjerne Zindler, M.Sc." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 256 "" 0 "" {TEXT -1 57 "Erstell t: 09. Januar 2012 - Letzte Revision: 24 Juni 2014" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 258 24 "Definition der Gau\337kurve" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "expr_sum:=exp(-tau^2)*sin(2*Pi*tau): " }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 259 35 "Grafische Darstellung der Gau\337kurve" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "plot(expr_sum,tau=-2..2,axes=boxed,thickness=2); " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 260 25 "Beginn der Fourieranalyse" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 261 28 "Festlegen d er Periodenl\344ngen" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "x:=+2;y:=-2;L:=x-y; " }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 262 52 "Berechnung der ersten zehn Koeffizienten \"a\" und \"b\" " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 796 "a[0]:=evalf(2/L*int(ex pr_sum,tau=x..y));a[1]:=evalf(2/L*int(expr_sum*cos(2*1*Pi*tau/L),tau=x ..y));a[2]:=evalf(2/L*int(expr_sum*cos(2*2*Pi*tau/L),tau=x..y));a[3]:= evalf(2/L*int(expr_sum*cos(2*3*Pi*tau/L),tau=x..y));a[4]:=evalf(2/L*in t(expr_sum*cos(2*4*Pi*tau/L),tau=x..y));a[5]:=evalf(2/L*int(expr_sum*c os(2*5*Pi*tau/L),tau=x..y));a[6]:=evalf(2/L*int(expr_sum*cos(2*6*Pi*ta u/L),tau=x..y));a[7]:=evalf(2/L*int(expr_sum*cos(2*7*Pi*tau/L),tau=x.. y));a[7]:=evalf(2/L*int(expr_sum*cos(2*7*Pi*tau/L),tau=x..y));a[7]:=ev alf(2/L*int(expr_sum*cos(2*7*Pi*tau/L),tau=x..y));a[8]:=evalf(2/L*int( expr_sum*cos(2*8*Pi*tau/L),tau=x..y));a[8]:=evalf(2/L*int(expr_sum*cos (2*8*Pi*tau/L),tau=x..y));a[9]:=evalf(2/L*int(expr_sum*cos(2*9*Pi*tau/ L),tau=x..y));a[10]:=evalf(2/L*int(expr_sum*cos(2*10*Pi*tau/L),tau=x.. y));" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 582 "b[1]:=evalf(2/L*in t(expr_sum*sin(2*1*Pi*tau/L),tau=x..y));b[2]:=evalf(2/L*int(expr_sum*s in(2*2*Pi*tau/L),tau=x..y));b[3]:=evalf(2/L*int(expr_sum*sin(2*3*Pi*ta u/L),tau=x..y));b[4]:=evalf(2/L*int(expr_sum*sin(2*4*Pi*tau/L),tau=x.. y));b[5]:=evalf(2/L*int(expr_sum*sin(2*5*Pi*tau/L),tau=x..y));b[6]:=ev alf(2/L*int(expr_sum*sin(2*6*Pi*tau/L),tau=x..y));b[7]:=evalf(2/L*int( expr_sum*sin(2*7*Pi*tau/L),tau=x..y));b[8]:=evalf(2/L*int(expr_sum*sin (2*8*Pi*tau/L),tau=x..y));b[9]:=evalf(2/L*int(expr_sum*sin(2*9*Pi*tau/ L),tau=x..y));b[10]:=evalf(2/L*int(expr_sum*sin(2*10*Pi*tau/L),tau=x.. y));" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 263 73 "Rekonstruktion des analysierten Rechtecksignal s und grafische Darstellung" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 171 "expr_synth:=a[0]/2 +sum(a[m]*cos(2*m*Pi*tau/L),m=1..10)+sum(b[m]*sin(2*m*Pi*tau/L),m=1..1 0);plot([expr_sum,-expr_synth],tau=-2..2,axes=boxed,thickness=2, color =[blue,red]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}} {EXCHG {PARA 0 "" 0 "" {TEXT 264 83 "Grafische Darstellung der Abweich ung zwischen origin\344rem und rekonstruiertem Signal" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 61 "plot([expr_synth+expr_sum],tau=-2..2,axes=boxed,thick ness=2);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 265 52 "Berechnung der ersten zehn Amplituden- K oeffizienten" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 282 "A[0]:=sqrt(a[0]^2);A[1]:=sq rt(a[1]^2+b[1]^2);A[2]:=sqrt(a[2]^2+b[2]^2);A[3]:=sqrt(a[3]^2+b[3]^2); A[4]:=sqrt(a[4]^2+b[4]^2);A[5]:=sqrt(a[5]^2+b[5]^2);A[6]:=sqrt(a[6]^2+ b[6]^2);A[7]:=sqrt(a[7]^2+b[7]^2);A[8]:=sqrt(a[8]^2+b[8]^2);A[9]:=sqrt (a[9]^2+b[9]^2);A[10]:=sqrt(a[10]^2+b[10]^2);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 266 51 "Erstel len des Amplitudenganges als plotf\344hige Liste" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 68 "P:=seq([H,A[H]],H=0..10):plot([P],color=red,axes=boxed,thickness=2 );" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1 "#" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "9 0 0" 42 }{VIEWOPTS 1 1 0 1 1 1803 }