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FOREWORD 
The Leonardo da Vinci Pilot Project CZ/02/B/F/PP-134007,  “Development of Skills 

Facilitating Implementation of Structural Eurocodes” addresses the urgent need to implement 
the new system of European documents related to design of construction works and products. 
These documents, called Eurocodes, are systematically based on recently developed Council 
Directive 89/106/EEC “The Construction Products Directive” and its Interpretative Documents 
ID1 and ID2. Implementation of Eurocodes in each Member State is a demanding task as each 
country has its own long-term tradition in design and construction. 

The project should enable an effective implementation and application of the new 
methods for designing and verification of buildings and civil engineering works in all the 
partner countries (CZ, DE, ES, IT, NL, SI, UK) and in other Member States. The need to 
explain and effectively use the latest principles specified in European standards is apparent 
from various enterprises, undertakings and public national authorities involved in construction 
industry and also from universities and colleges. Training materials, manuals and software 
programmes for education are urgently required.  

The submitted Handbook 2 is one of 5 upcoming handbooks intended to provide 
required manuals and software products for training, education and effective implementation 
of Eurocodes: 

Handbook 1: Basis of Structural Design 
Handbook 2: Reliability Backgrounds 
Handbook 3: Load Effect for Buildings 
Handbook 4: Load Effect for Bridges 
Handbook 5: Design of Buildings for Fire Situation  
It is expected that the Handbooks will address the following intents in further 

harmonisation of European construction industry:  
- reliability improvement and unification of the process of design; 
- development of the single market for products and for construction services; 
- new opportunities for the trained primary target groups in the labour market. 
The Handbook 2 is focused on the basis of structural reliability and risk engineering 

related to Eurocodes. The following topics are treated in particular: 
-  basic concepts of structural reliability; 
-  elementary methods of the reliability theory; 
-  reliability differentiation and design working life; 
-  design assisted by testing; 
-  assessment of existing structures; 
-  basis of risk assessment. 
Annex A to the Handbook 2 provides a review of "Basic Statistical Concepts and 

Techniques" frequently used in the text. Annex B provides an extension of elementary 
methods of structural reliability and annex C describes calibration procedures that may be 
used for specification of reliability elements. The Handbook 2 is written in a user-friendly way 
employing only basic mathematical tools. Attached software products accompanying a number 
of examples enable applications of general rules in practice. 

A wide range of potential users of the Handbooks and other training materials includes 
practising engineers, designers, technicians, experts of public authorities, young people - high 
school and university students. The target groups come from all territorial regions of the 
partner countries. However, the dissemination of the project results is foreseen to be spread 
into all Member States of CEN and other interested countries.  

 

Prague 05/2005 
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CHAPTER I - BASIC CONCEPTS OF STRUCTURAL RELIABILITY  
 

Milan Holický1 and Ton Vrouwenvelder2  
 

1Klokner Institute, Czech Technical University in Prague, Czech Republic  
2Delft University of Technology, TNO BOUW, The Netherlands 

 
 
 

Summary 
 

Uncertainties affecting structural performance can never be entirely eliminated and 
must be taken into account when designing any construction work. Various design methods 
and operational techniques for verification of structural reliability have been developed and 
worldwide accepted in the past. The most advanced operational method of partial factors is 
based on probabilistic concepts of structural reliability and available experience. General 
principles of structural reliability can be used to specify and further calibrate partial factors 
and other reliability elements. Moreover, developed calculation procedures and convenient 
software products can be used directly for verification of structural reliability using 
probabilistic concepts and available experimental data.  

 
 
1 INTRODUCTION 
 
1.1 Background materials 

Basic concepts of structural reliability are codified in a number of national standards, 
in the new European document EN 1990 [1] and the International Standard ISO 2394 [2]. 
Additional information may be found in the background document developed by JCSS [3] 
and in recently published handbook to EN 1990 [4]. Guidance for application of probabilistic 
methods of structural reliability may be found in working materials provided by JCSS [5] and 
in relevant literature listed in [4 and [5]. Elementary methods of the theory of reliability are 
described in Chapter II and III in this Handbook 2. 
 
1.2 General principles 

General principles of structural reliability are described in both the international 
documents EN 1990 [1] and ISO 2394 [2]. Basic requirements on structures are specified in 
Section 2 of EN 1990 [1]: a structure shall be designed and executed in such a way that it will, 
during its intended life, with appropriate degrees of reliability and in an economic way 

 
- sustain all actions and influences likely to occur during execution and use; 
- remain fit for the use for which it is required. 
 
It should be noted that two aspects are explicitly mentioned: reliability and economy 

(see also Handbook 1). However, in this Handbook 2 we shall be primarily concern with 
reliability of structures, which include  

 
- structural resistance; 
- serviceability; 
- durability.  
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Additional requirements may concern fire safety of structures (see Handbook 5) or 
other accidental design situations. In particular it is required by EN 1990 [1] that in the case 
of fire, the structural resistance shall be adequate for the required period of time.  

To verify all the aspects of structural reliability implied by the above-mentioned basic 
requirements, an appropriate design lifetime, design situations and limit states should be 
considered (as described in Handbook 1). Note that the basic lifetime for a common building 
is 50 years and that, in general, four design situations are identified: permanent, transient, 
accidental and seismic. Two types of limit states are normally verified: ultimate limit states 
and serviceability limit states. Detail guidance is provided in Handbook 1.  
 
 
2 UNCERTAINTIES 
 
2.1 Classification of uncertainties 

It is well recognised that construction works are complicated technical systems 
suffering from a number of significant uncertainties in all stages of execution and use. 
Depending on the nature of a structure, environmental conditions and applied actions, various 
types of uncertainties become more significant than the others. The following types of 
uncertainties can be identified in general: 

 
- natural randomness of actions, material properties and geometric data;  
- statistical uncertainties due to a limited size of available data; 
- uncertainties of the resistance and load effect models due to simplifications of actual 

conditions; 
- vagueness due to inaccurate definitions of performance requirements; 
- gross errors in design, during execution and use; 
- lack of knowledge concerning behaviour of new materials and actions in actual 

conditions. 
 
The order of the listed uncertainties corresponds approximately to the decreasing level 

of current knowledge and available theoretical tools for their description and consideration in 
design (see following sections). It should be emphasized that most of the above listed 
uncertainties (randomness, statistical and model uncertainties) can never be eliminated 
absolutely and must be taken into account when designing any construction work.  

 
2.2 Available tools to describe uncertainties 

Natural randomness and statistical uncertainties may be relatively well described by 
available methods provided by the theory of probability and mathematical statistics. In fact 
the EN 1990 [1] gives some guidance on available techniques. However, lack of credible 
experimental data (e.g. for new materials, some actions including environmental influences 
and also for some geometrical properties) causes significant problems. In some cases the 
available data are inhomogeneous, obtained under different conditions (e.g. for material 
resistance, imposed loads, environmental influences, for inner dimensions of reinforced 
concrete cross-sections). Then it may be difficult, if not impossible, to analyse and use them 
in design.  

The uncertainties of computational models may be to a certain extent assessed on the 
basis of theoretical and experimental research. EN 1990 [1] and materials of JCSS [5] provide 
some guidance. The vaguenesses caused by inaccurate definitions (in particular of 
serviceability and other performance requirements) may be partially described by the means 
of the theory of fuzzy sets. However, these methods have a little practical significance, as 
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suitable experimental data are rarely available. The knowledge of the behaviour of new 
materials and structures may be gradually increased through theoretical analyses verified by 
experimental research. 

The lack of available theoretical tools is obvious in the case of gross errors and lack of 
knowledge, which are nevertheless often the decisive causes of structural failures. To limit 
gross errors due to human activity, a quality management system including the methods of 
statistical inspection and control may be effectively applied. 

Various design methods and operational techniques, which take these uncertainties 
into account, have been developed and worldwide used. The theory of structural reliability 
provides background concept techniques and theoretical bases for description and analysis of 
the above-mentioned uncertainties concerning structural reliability.  

 
 

3 RELIABILITY 
 

3.1 General 
The term "reliability" is often used very vaguely and deserves some clarification. 

Often the concept of reliability is conceived in an absolute (black and white) way – the 
structure either is or isn’t reliable. In accordance with this approach the positive statement is 
understood in the sense that “a failure of the structure will never occur“. This interpretation is 
unfortunately an oversimplification. Although it may be unpleasant and for many people 
perhaps unacceptable, the hypothetical area of “absolute reliability” for most structures (apart 
from exceptional cases) simply does not exist. Generally speaking, any structure may fail 
(although with a small or negligible probability) even when it is declared as reliable.  

The interpretation of the complementary (negative) statement is usually understood 
more correctly: failures are accepted as a part of the real world and the probability or 
frequency of their occurrence is then discussed. In fact in the design it is necessary to admit a 
certain small probability that a failure may occur within the intended life of the structure. 
Otherwise designing of civil structures would not be possible at all. What is then the correct 
interpretation of the keyword “reliability” and what sense does the generally used statement 
“the structure is reliable or safe” have? 

 
3.2 Definition of reliability 

A number of definitions of the term “reliability” are used in literature and in national 
and international documents. ISO 2394 [2] provides a definition of reliability, which is similar 
to the approach of national standards used in some European countries: reliability is the 
ability of a structure to comply with given requirements under specified conditions during the 
intended life, for which it was designed. In quantitative sense reliability may be defined as the 
complement of the probability of failure. 

 
Note that the above definition of reliability includes four important elements: 
 
- given (performance) requirements – definition of the structural failure, 
- time period – assessment of the required service-life T, 
- reliability level – assessment of the probability of failure Pf, 
- conditions of use – limiting input uncertainties. 
 
An accurate determination of performance requirements and thus an accurate 

specification of the term failure are of uttermost importance. In many cases, when considering 
the requirements for stability and collapse of a structure, the specification of the failure is not 
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very complicated. In many other cases, in particular when dealing with various requirements 
of occupants’ comfort, appearance and characteristics of the environment, the appropriate 
definitions of failure are dependent on several vaguenesses and inaccuracies. The 
transformation of these occupants' requirements into appropriate technical quantities and 
precise criteria is very hard and often leads to considerably different conditions. 

In the following the term failure is being used in a very general sense denoting simply 
any undesirable state of a structure (e.g. collapse or excessive deformation), which is 
unambiguously given by structural conditions. 

The same definition as in ISO 2394 is provided in Eurocode EN 1990 [1] including 
note that the reliability covers the load-bearing capacity, serviceability as well as the 
durability of a structure. Fundamental requirements include the statement (as already 
mentioned) that ”a structure shall be designed and executed in such a way that it will, during 
its intended life with appropriate degrees of reliability and in an economic way sustain all 
actions and influences likely to occur during execution and use, and remain fit for the use for 
which it is required”. Generally a different level of reliability for load-bearing capacity and 
for serviceability may be accepted for a structure or its parts. In the documents [1] and [2] the 
probability of failure Pf (and reliability index β) are indicated with regard to failure 
consequences (see Handbook 1). 
 
3.3 Probability of failure 

The most important term used above (and in the theory of structural reliability) is 
evidently the probability of failure Pf. In order to defined Pf properly it is assumed that 
structural behaviour may be described by a set of basic variables X = [X1, X2, ... , Xn] 
characterizing actions, mechanical properties, geometrical data and model uncertainties. 
Furthermore it is assumed that the limit state (ultimate, serviceability, durability or fatigue) of 
a structure is defined by the limit state function (or the performance function), usually written 
in an implicit form as 

 Z(X) = 0 (1) 

The limit state function Z(X) should be defined in such a way that for a favourable (safe) state 
of a structure the function is positive, Z(X) ≥ 0, and for a unfavourable state (failure) of the 
structure the limit state function is negative, Z(X) < 0 (a more detailed explanation is given in 
the following Chapters of this Handbook 2). 

For most limit states (ultimate, serviceability, durability and fatigue) the probability of 
failure can be expressed as 

 Pf = P{Z(X) < 0} (2) 

The failure probability Pf can be assessed if basic variables X = [X1, X2, ... , Xn] are 
described by appropriate probabilistic (numerical or analytical) models. Assuming that the 
basic variables X = [X1, X2, ... , Xn] are described by time independent joint probability density 
function ϕX(x) then the probability Pf can be determined using the integral 

 xxX d)(
0)(Z

f ∫
<

=
X

P ϕ  (3) 

More complicated procedures need to be used when some of the basic variables are 
time-dependent. Some details concerning theoretical models for time-dependent quantities 
(mainly actions) and their use for the structural reliability analysis are given in other Chapters 
of this Handbook 2. However, in many cases the problem may be transformed to a time-
independent one, for example by considering in equation (2) or (3) a minimum of the function 
Z(X) over the reference period T.  
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Note that a number of different methods [2] and software products [7, 8, 10] are 
available to calculate failure probability Pf defined by equation (2) or (3). 

 
3.4 Reliability index 

An equivalent term to the failure probability is the reliability index β, formally defined 
as a negative value of a standardized normal variable corresponding to the probability of 
failure Pf. Thus, the following relationship may be considered as a definition  

 )(Φ f
1 PU

−−=β  (4) 

Here )(1 pu fΦ−  denotes the inverse standardised normal distribution function. At present the 
reliability index β defined by equation (4) is a commonly used measure of structural 
reliability in several international documents [1], [2], [5]. 

It should be emphasized that the failure probability Pf and the reliability index β 
represent fully equivalent reliability measures with one to one mutual correspondence given 
by equation (4) and numerically illustrated in Table 1.  

 
 
Table 1. Relationship between the failure probability Pf and the reliability index β. 

Pf 10−1 10−2 10−3 10−4 10−5 10−6 10−7 
β 1,3 2,3 3,1 3,7 4,2 4,7 5,2 

 
In EN 1990 [1] and ISO 2394 [2] the basic recommendation concerning a required 

reliability level is often formulated in terms of the reliability index β related to a certain 
design working life.  
 
3.5 Time variance of failure probability 

When the vector of basic variables X = X1, X2, ... , Xm is time variant, then the failure 
probability p is also time variant and should be always related to a certain reference period T, 
which may be generally different from the design working life Td. Considering a structure of a 
given reliability level, the design failure probability pd = pn related to a general reference 
period Tn = n T1 can be derived from the alternative probability pa = p1 corresponding to Ta = 
T1 (to simplify notation note that the previously used subscript "d" corresponds now to "n" 
and subscript "a" to "1"). Detail description of this transformation is provided in Chapter III.  
 
 
4 DESIGN TARGETS  
 
4.1 Indicative values of design working life 

Design working life Td is an assumed period of time for which a structure or part of it 
is to be used for its intended purpose with anticipated maintenance but without major repair 
being necessary. In the recent documents CEN [1] and ISO [2] indicative values of Td are 
provided for five categories of structures as shown in Table 2.  

A more detailed specification of structural categories and design working lives may be 
found in some national standards. In general the design working lives may be greater (in some 
cases by 100 %) than those given in Table 2. For example the design working life for 
temporary structures may be 15 years, for agricultural structures 50 years, for apartment and 
office buildings 100 years, and for railways structures, dams, tunnels and other underground 
engineering works 120 years or more. 
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Table 2. Indicative design working life Td. 
Category Design working life Td (years) Examples 
1 10 Temporary structures 
2 10 to 25 Replaceable structural parts, bearings, girders 
3 15 to 30 Agricultural and similar structures 
4 50 Building structures and common structures 
5 100 and more Monumental building or civil structures, bridges 

 
 

4.2 Target reliability level 
Design failure probabilities pd are usually indicated in relation to the expected social 

and economical consequences. EN 1990 [1] provides the classification of target reliability 
levels into three classes of consequences (high, normal, low) and indicates the adequate 
reliability indexes β for two reference periods T (1 year and 50 years). No explicit link to the 
design working life Td. is given Similar β-values may be found also in some national 
standards and international standards ISO [2]. Detail description of the target is given in 
Chapter III in this Handbook 2. 

It should be underlined that the couple of β values (βa and βd) recommended in [1] for 
each reliability class (for 1 year and 50 years) correspond to the same reliability level. 
Practical application of these values depend on the reference period Ta considered in the 
verification, which may be connected with available information concerning time variant 
vector of basic variables X = X1, X2, ..., Xn. For example, if the reliability class 2 and 50 years 
design working period is considered, then the reliability index βd = 3,8 should be used in the 
verification of structural reliability. The same reliability level corresponding to the class 2 is 
achieved when the time period Ta = 1 years and βa = 4,7 are considered. Thus, various 
reference periods Ta, in general different from the design working life Td, may be used for 
achieving a certain reliability level. 
 
 
5 DESIGN METHODS IN PRACTICE  

 
5.1 General 

During their historical development the design methods have been closely linked to 
the available empirical, experimental as well as theoretical knowledge of mechanics and the 
theory of probability. The development of various empirical methods for structural design 
gradually crystallized in the twentieth century in three generally used methods, which are, in 
various modifications, still applied in standards for structural design until today: the 
permissible stresses method, the global factor and partial factor methods. All these methods 
are often discussed and sometimes reviewed or updated.  

The following short review of historical development illustrates general formats of 
above mentioned design methods, indicate relevant measures that are applied to take into 
account various uncertainties of basic variables and to control resulting structural reliability. 
In addition a short description of probabilistic methods of structural reliability and their role 
in further development of design procedures is provided. Detailed description of probabilistic 
methods of structural reliability is given in Chapter II, Chapter III and in Annex B of this 
Handbook 2. 
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5.2 Permissible stresses 
The first of the worldwide-accepted design methods for structural design is the method 

of permissible stresses that is based on linear elasticity theory. The basic design condition of 
this method can be written in the form 

 σmax < σper, where σper = σcrit / k (5) 
The coefficient k (greater than 1) is the only explicit measure supposed to take into account all 
types of uncertainties (some implicit measures may be hidden). Moreover, only a local effect 
(a stress) σmax is compared with the permissible stress σper and, therefore, a local (elastic) 
behaviour of a structure is used to guarantee its reliability. No proper way is provided for 
treating geometric non-linearity, stress distribution and ductility of structural materials and 
members. For that reasons the permissible stress method leads usually to conservative and 
uneconomical design.  

However, the main insufficiency of the permissible stress method is lack of possibility 
to consider uncertainties of individual basic variables and computational models used to 
assess load effects and structural resistances. Consequently, reliability level of structures 
exposed to different actions and made of different material may be not only conservative 
(uneconomical) but also considerably different.  

 
5.3 Global safety factor 

The second widespread method of structural design is the method of global safety 
factor. Essentially it is based on a condition relating the standard or nominal values of the 
structural resistance R and load effect E. It may be written as  

 s = R / E > s0 (6) 

Thus the calculated safety factor s must be greater than its specified value s0 (for example s0 = 
1,9 is commonly required for bending resistance of reinforced concrete members). The global 
safety factor method attempts to take into account realistic assumptions concerning structural 
behaviour of members and their cross-sections, geometric non-linearity, stress distribution 
and ductility; in particular through the resulting quantities of structural resistance R and action 
effect E. 

However, as in the case of the permissible stresses method the main insufficiency of 
this method remains a lack of possibility to consider the uncertainties of particular basic 
quantities and theoretical models. The probability of failure can, again, be controlled by one 
explicit quantity only, by the global safety factor s. Obviously harmonisation of reliability 
degree of different structural members made of different materials is limited.  

 
5.4 Partial factor method 

At present, the most advanced operational method of structural design [1, 2] accepts 
the partial factor format (sometimes incorrectly called the limit states method) usually applied 
in conjunction with the concept of limit states (ultimate, serviceability or fatigue). This 
method can be generally characterised by the inequality  

 Ed (Fd, fd, ad, θd) < Rd (Fd, fd, ad, θd) (7) 

where the design values of action effect Ed and structural resistance Rd are assessed 
considering the design values of basic variables describing the actions Fd = ψ γF Fk, material 
properties fd = fk /γm, dimensions ad + Δa and model uncertainties θd. The design values of 
these quantities are determined (taking into account various uncertainties) using their 
characteristic values (Fk, fk, ak, θk), partial factors γ, reduction factors ψ and other measures of 
reliability [1, 2, 3, 4], Thus the whole system of partial factors and other reliability elements 
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may be used to control the level of structural reliability. Detailed description of the partial 
factor methods used in Eurocodes method is provided in Handbook 1. 

Compared with previous design methods the partial factor format obviously offers the 
greatest possibility to harmonise reliability of various types of structures made of different 
materials. Note, however, that in any of the above listed design methods the failure 
probability is not applied directly. Consequently, the failure probability of different structures 
made of different materials may still considerably vary even though sophisticated calibration 
procedures were applied. Further desired calibrations of reliability elements on probabilistic 
bases are needed; it can be done using the guidance provided in the International standard ISO 
2394 [2] and European document EN 1990 [1]. 

 
5.5 Probabilistic methods 

The probabilistic design methods introduced in the International Standard [2] are 
based on a requirement that during the service life of a structure T the probability of failure Pf 
does not exceed the design value pd or the reliability index β is greater than its design value βd  

 Pf ≤ Pd or β > βd (8) 

In EN 1990 [1] the basic recommended reliability index for ultimate limit states βd = 
3,8 corresponds to the design failure probability Pd = 7,2 × 10-5, for serviceability limit states 
βd = 1,5 corresponds to Pd = 6,7 × 10-2. These values are related to the design working life of 
50 years that is considered for building structures and common structures. In general greater β 
- values should be used when a short reference period (one or five years) will be used for 
verification of structural reliability.  

It should be mentioned that probabilistic methods are not yet commonly used in 
design praxis. However, the developed calculation procedures and software products (for 
example [7, 8] and [10]) already enable the direct verification of structural reliability using 
probabilistic concepts and available experimental data. Recently developed software product 
CodeCal [10] is primarily intended for calibration of codes based on the partial factor method.  

In Chapter II of this Handbook 2 numerical examples will be presented to illustrate the 
methods discussed above.  
 
 
6  DESIGN ASSISTED BY TESTING 
 
  In some cases there is a need to base the design on a combination of tests and 
calculations, for instance if no adequate calculation model is available. The tests may vary 
from wind tunnel tests to prototype testing of new structural materials, elements or 
assemblies. Tests may also be carried out during or after execution to confirm the design 
assumptions. The extreme example is a proof load. For design by testing the following types 
of tests can be distinguished: 

 
a) tests to establish directly the resistance for given loading conditions  
b) tests to obtain specific material properties 
c) tests to reduce model uncertainties in loads, load effects or resistance models 
 
Test should be set up and evaluated in such a way that the usual required level of 

reliability is achieved. The derivation of a characteristic or design value should take into 
account the scatter of test data, statistical uncertainty associated with the number of tests and 
prior statistical knowledge. If the response of the structure or structural member or the 
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resistance of the material depends on influences not sufficiently covered by the tests such as 
duration or scale effects, corrections should be made. 
 When evaluating test results, the behaviour of test specimens and failure modes should 
be compared with theoretical predictions. When significant deviations from a prediction 
occur, an explanation should be sought: this might involve additional testing, perhaps under 
different conditions, or modification of the theoretical model. 
 
 The evaluation of test results should be based on statistical methods. In Eurocodes both 
Bayesian and classical frequentistic methods are used. When frequentistic methods are used a 
confidence level has to be chosen. The level of the confidence interval may influence the final 
value. On the average, a confidence level of 0.75 leads to the same result as the Bayesian 
methods. For this reason 0.75 is chosen in most cases, however also other numbers are used (eg. 
0.85 in EN 1995).  

In Basis of Design the preference is given for Bayesian methods, which generally is 
believed to be more consistent with modern reliability theory then frequentistic methods. 
Moreover, Bayesian methods provide a formal framework for the use of prior knowledge, which 
is essential especially in the case of small samples and quality control methods. In most 
Eurocodes special rules for small samples are presented, but in general without formal 
background.  

Rules for execution and evaluation of design by testing are presented in Annex D of 
EN 1990 Basis of Design. For detailed background and worked examples, the reader is 
referred to Annex A of this Handbook 2. 
 
 
7  CONCLUDING REMARKS 
 

The basic concepts of the probabilistic theory of reliability are characterized by two 
equivalent terms, the probability of failure Pf and the reliability index β. Although they 
provide limited information on the actual frequency of failures, they remain the most 
important and commonly used measures of structural reliability. Using these measures the 
theory of structural reliability may be effectively applied for further harmonisation of 
reliability elements and for extensions of the general methodology for new, innovative 
structures and materials.  

Historical review of the design methods worldwide accepted for verification of 
structural members indicates different approaches to considering uncertainties of basic 
variables and computational models. The permissible stresses method proves to be rather 
conservative (and uneconomical). The global safety factor and partial factor methods lead to 
similar results. Obviously, the partial factor method, accepted in the recent EN documents, 
represents the most advanced design format leading to a suitable reliability level that is 
relatively close to the level recommended in EN 1990 (β = 3,8). The most important 
advantage of the partial factor method is the possibility to take into account uncertainty of 
individual basic variables by adjusting (calibrating) the relevant partial factors and other 
reliability elements. 

Various reliability measures (characteristic values, partial and reduction factors) in the 
new structural design codes using the partial factor format are partly based on probabilistic 
methods of structural reliability, partly (to a great extent) on past empirical experiences. 
Obviously the past experience depends on local conditions concerning climatic actions and 
traditionally used construction materials. These aspects may be considerably different in 
different countries. That is why a number of reliability elements and parameters in the present 
suite of European standards are open for national choice.  
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It appears that further harmonisation of current design methods will be based on 
calibration procedures, optimisation methods and other rational approaches including the use 
of methods of the theory of probability, mathematical statistics and the theory of reliability. 
The probabilistic methods of structural reliability provide the most important tool for gradual 
improvement and harmonisation of the partial factor method for various structures from 
different materials. Moreover, developed software products enable direct application of 
reliability methods for verification of structures using probabilistic concepts and available 
data. 

Design assisted by testing may be used when there is a need to base the design on a 
combination of tests and calculations. The tests may vary from wind tunnel tests to prototype 
testing of new structural materials, elements or assemblies. Tests may also be carried out 
during or after execution to confirm the design assumptions. An operational technique 
recommended in [1] is described in Chapter IV of this Handbook 2. 
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ATTACHMENTS 
 
1. MATHCAD sheet “Beta-Time.mcd” 

Mathcad sheet "Beta-Time" is intended for transformation of probability and 
reliability index Beta" for different reference periods.  
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Attachment 1 - MATHCAD sheet “Beta-Time.mcd” 

Mathcad sheet Beta -Time  
Mathcad sheet "Beta-Time" is intended for transformation of probability and reliability index
Beta" for different reference periods"   

1 Input data n 10 20, 100..:= β1 0 1, 6..:=

2 Probability

p1 β1( ) pnorm β1− 0, 1,( ):= pn β1 n,( ) 1 1 p1 β1( )−( )n
−⎡⎣ ⎤⎦:=

3 Reliability index

βn β1 n,( ) qnorm 1 1 pnorm β1− 0, 1,( )−( )n
−⎡⎣ ⎤⎦ 0, 1,⎡⎣ ⎤⎦−:= βn 4.7 50,( ) 3.826=

4 Numerical results β1
0
1

2

3

4

5

6

= p1 β1( )
0.5

0.159

0.023
-31.35·10
-53.167·10
-72.867·10

-109.866·10

= pn β1 50,( )
1
1

0.684

0.065
-31.582·10
-51.433·10
-84.933·10

=

5 Graphical results β1 0 0.1, 6..:= βnt 3.8:= pnt p1 βnt( ):= pnt 7.235 10 5−
×=

0 2 4 6
0

5 .10 5

1 .10 4

pn β1 1,( )

pn β1 5,( )

pn β1 50,( )

pnt

β1

0 2 4 6
0

2

4

6

βn β1 1,( )

βn β1 5,( )

βn β1 50,( )

βnt

β1  
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Summary 
 

Elementary methods of structural reliability are described considering a fundamental 
case of two random variables when the limit state function is formulated as a difference 
between the resulting structural resistance and load effect. The initial assumption of normal 
distribution of both resulting variables is generalised to any type of probability distribution. 
The described computational procedures are illustrated by a number of numerical examples, 
which are supplemented by MATHCAD and EXCEL sheets. An extension of the elementary 
methods of structural reliability is presented in Annex B. 

 
 

1 INTRODUCTION 
 
1.1 Background materials 

Fundamental concepts and procedures of structural reliability are well described in a 
number of national standards, in the new European document EN 1990 [1] and International 
Standard ISO 2394 [2]. Additional information may be found in the background document 
developed by JCSS [3] and in recently published handbook to EN 1990 [4]. Guidance on 
application of the probabilistic methods of structural reliability may be found in publications 
and working materials developed by JCSS [5] and in relevant literature listed in [4] and [5].  
 
1.2 General principles 

The theory of structural reliability considers all basic variables as random quantities 
having appropriate types of probability distribution. Different types of distributions should be 
considered for actions, material properties and geometrical data. In addition, model 
uncertainties of actions and resistance models should be taken into account. Prior theoretical 
models of basic variables and procedures for probabilistic analysis are indicated in JCSS 
documents [5].  
 
 
2 FUNDAMENTAL CASES OF STRUCTURAL RELIBILITY 

 
2.1 General 

The fundamental task of the theory of structural reliability concerns a basic 
requirement for the relation between the action effect E and the structural resistance R written 
in the form of inequality 

 E < R  (1) 
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Condition (1) describes a desirable (satisfactory, safe) state of a considered structural 
component. It is assumed that structural failure occurs when the condition (1) is not satisfied. 
Thus, an assumed sharp (unambiguous) distinction between a desirable (safe) and undesirable 
(failure) state of the structure is given as  

 R − E = 0  (2) 

Equation (2) represents a fundamental form of the failure boundary called the limit 
state (performance) function (see also Chapter I of this Handbook 2). It should be noted that 
for some structural members and materials the assumption of sharp failure boundary might be 
rather artificial and can be accepted as an approximation only. Such a case is indicated in the 
following Example 1.  
 
Example 1.  

A steel rod indicated in Figure 1 has a tensile resistance R 
= π d2 fy / 4, where d denotes the diameter of the rod and fy the 
yield point. The rod is loaded by a weight E = Vρ, where 
V denotes the volume and ρ the bulk weight density of the load. 
Thus the inequality (1) has the form 

 Vρ < π d2 fy / 4  

The limit state function (2) can be then written as 

 π d2 fy / 4 - Vρ = 0   
In this example, the limit state is defined as the state when 

the stress in the rod reaches the yield point fy. This simplification 
is accepted in many common cases, but (depending on a type of 
structural steel) it may not correspond to the actual failure of the 
rod. In particular when structural steel with significant ductility 
and strain hardening is used, then a failure (rupture) will occur 
when the stress reaches the ultimate strength of the steel, which is 
a considerably greater than the yield point. 

Attached MATHCAD sheets SteelRod.mcd, DesVRod.mcd may be used to make all 
numerical calculations. 

 
Both the variables E and R are generally random variables and the validity of 

inequality (1) cannot be guaranteed absolutely, i.e. with the probability equal to 1 (the total 
certainty). Therefore, it is necessary to accept the fact that the limit state described by 
equation (2) may be exceeded and failure may occur with a certain small probability. The 
essential objective of the reliability theory is to assess the probability of failure Pf and to find 
the necessary conditions for its limited magnitude. For the simple condition in the form of 
inequality (1), the probability of failure may be formally written as 

 Pf = P(E > R)  (3) 

The random character of the action effect E and the resistance R, both expressed in 
terms of a suitable variable (performance indicator) X (i.e. stress, force, bending moment, 
deflection) is usually described by appropriate distribution function, i.e. by distribution 
functions ΦE(x), ΦR(x) and by corresponding probability density functions ϕE(x), ϕR(x), where 
x denotes a general point of the considered variable X used to express both the variables E and 
R. Distributions of variables E and R further depend on appropriate parameters, e.g. on 

 

E   

Figure 1. A rod. 

R   
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moment parameters μE, σE, ωE, μR, σR and ωR. Let us further assume that E and R are 
mutually independent (which may be provided by appropriate transformation).  

Figure 2 shows an example of the probability density functions of both the variables E 
and R and their mutual location. Types of distribution and their parameters shown in Figure 2 
are just indicative information. In particular, the moment parameters (the means and standard 
deviations) may be considered as relative values given as a percentage of the resistance mean 
μR (i.e. normalised by μR). 

Note, that the probability density functions ϕE(x) and ϕR(x) shown in Figure 2 overlap 
each other and, therefore, it is clear that unfavourable realizations of variables E and R, 
denoted by small letters e and r, may occur in such a way that e > r, i.e. the load effect is 
greater than the resistance and failure will occur. Obviously in order to keep the failure 
probability Pf = P(E>R) within an acceptable limits, the parameters of variables E and R must 
satisfy certain conditions (concerning the mutual position and variances of both distributions) 
depending on the types of distribution. 

 

 
Figure 2. Action effect E and resistance R as random variables. 

 
 
The desired conditions will certainly include the trivial inequality μE < μR (see Figure 

2). Obviously, this “requirement for mutual position“ of both distributions is not sufficient to 
ensure specified failure probability Pf. The correct conditions should certainly include also 
conditions for variances of both variables. This will be clarified by the following discussion of 
fundamental cases of structural reliability. 
 
2.2 Fundamental cases of one random variable 

 
First, consider a special case when one of the variables E and R, say the action effect 

E, has a very low (negligible) variability comparing to the variability of resistance R. Then E 
may be considered as non-random (deterministic) variable, i.e. such a variable that attains a 
certain fixed value E0 (E = E0) in its every realization. This assumption may certainly be 
considered as an approximation of some practical cases. One of these cases is the loaded steel 
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rod from Example 1, where the weight of the suspended mass can be determined with 
sufficient accuracy (i.e. without any significant uncertainty). This special case is illustrated in 
Figure 3, where the action effect is indicated by a fixed value e0 = 80 (μE = 80, σ E = 0) and 
the resistance by the lognormal distribution having the mean μR = 100, σR = 10 (all numerical 
data being normalised to dimensionless quantities).  

The probability of failure Pf for the special case of deterministic load effect of actions 
shown in Figure 3 may be assessed directly from the distribution function ΦR(x) similarly as 
in the case of a fractile. The value e0 may be simply considered as the fractile of the resistance 
R for which the probability Pf may be calculated using equation  

 Pf = P(R < e0) = ΦR(e0)  (4) 

The value of distribution function ΦR(E0) is usually assessed from tables for a 
standardized random variable U, for which the value u0 corresponding to E0 is computed. It 
follows from the general transformation formula  

 u0 = (e0 - σR) / σR  (5) 
 
 

 
Figure 3. Deterministic effect of actions E and random resistance R. 

 
 

The probability of failure is then given as 

 Pf = P(R < e0) = ΦR(e0) = ΦU(u0)  (6) 

where ΦU(u0) is the value of distribution function of a standardized random variable of the 
appropriate distribution (e.g. normal or log-normal).  

Note that the value -u0 is the distance of the fixed value E0 of action effect E from the 
mean μR of resistance R expressed in the units of standard deviation σR. If the distribution of 
resistance R is normal, then the defined distance is called the reliability index β  

 β = (μR − e0) / σR  (7) 
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and the probability of failure may be expressed by the relation 

 Pf = P(R < e0) = ΦU(−β)  (8) 

In general the reliability index β is defined as the negative value of a standardized 
normal variable corresponding to the probability of failure Pf. Thus, the following relationship 
is accepted as a definition (see Chapter I in this Handbok) 

 )(1
fU p−Φ−=β  (9) 

where )(1 pu fΦ− −  denotes the inverse standardised normal distribution function. At present the 
reliability index β defined by equation (9) is a commonly used measure of structural 
reliability in several national and international documents (see also previous Chapter I of this 
Handbook 2). Note, however, that the probability distribution of the resistance R may differ 
from the normal distribution.  
 
Example 2. 

Consider that resistance R has the mean μR = 100 (expressed in dimensionless units), 
standard deviation σR =10 (the coefficient of variation is VR = 0,10). For the deterministic 
action effect it holds that e0 = 80 (see Figure 3). If R has normal distribution, then the 
reliability index follows directly from equation (7)  

 β = (100 - 80) / 10 = 2  

and probability of failure follows from relation (8) 

 Pf = P(R < 80) = Φu(-2) = 0,023  

where Φu(-2) is the value of the distribution function of the standardized normal distribution 
for u = −2. However, if the distribution of R is not normal but lognormal with the lower limit 
at zero (skewness ωR = 3VR + V R 3= 0,301 [9]), then it follows from equation (5) 

 u0 = (80 − 100) / 10 = −2  
The probability of failure Pf is then given as 

 Pf = P(R < 80) = ΦLN,U(−2) = 0,014   

where ΦLN,U(-2) is the distribution function of the standardized random variable U with log-
normal distribution having the lower bound at zero (the skewness ω = 0,301). The resulting 
probabilities do not much differ but their values are rather high.  

If the fixed value of the action effect decreases to e0 = 70, then for normal distribution 
of resistance R the reliability index is β = 3 and probability of failure is  

 Pf = P(R < 70) = Φu(-3) = 0,00135   

If the distribution of resistance R is log-normal with the lower limit at zero, then  

 Pf = P(R < 70) = ΦLN,U(-3) = 0,00021  

The reliability index defined by equation (9) is then β = 53,3)00021,0(1 =Φ− −
U , i.e. 

greater than the value 3, which holds if normal distribution of resistance R is assumed.  
Obviously, when the load effect is only e0 = 70 the resulting failure probabilities are 

remarkably lower than in the case when e0 = 80. Furthermore, the numerical example also 
shows that the assumption concerning the type of distribution plays an important role and may 
be, in some cases, decisive. 
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2.3 Fundamental case of two random variables 
Assume that both basic variables, the action effect E and the resistance R are random 

variables. Then it is generally more complicated to assess the probability of failure defined by 
equation (3). A simple solution can be obtained assuming a normal distribution for both E and 
R. Then also the difference  

 Z = R - E  (10) 

called the safety margin, has the normal distribution with parameters 

 μZ = μR - μE  (11) 

 22222 2 ERREER σσρσσσ ++=Z  (12) 

where ρRE is the coefficient of correlation of R and E. It is often assumed that R and E are 
mutually independent and ρRE = 0. Equation (3) for the probability of failure Pf can now be 
modified to  

 Pf = P(E > R) = P(Z < 0) = ΦZ(0) (13) 

and the whole problem is reduced to determining the distribution function ΦZ(z) for z = 0, 
which leads to the probabilities of the safety margin Z being negative. The distribution 
function ΦZ(0) is usually determined by transformation of the variable Z to standardised 
random variable U. Using this equation, the value u0 corresponding to the value g = 0 is  

 u0 = (0 - μZ) /σZ = - μZ /σZ  (14) 

The probability of failure is then given as 

 Pf = P(R < E) = ΦZ(0) = ΦU(u0)  (15) 

The probability density function ϕZ(z) of the safety margin Z is shown in Figure 4, 
where the grey area under the curve ϕZ(z) corresponds to the failure probability Pf.  

Figure 4. Distribution of the safety margin Z.  
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Assuming that Z has a normal distribution, the value –u0 is called the reliability index, 
which is commonly denoted by the symbol β. In case of a normal distribution of the safety 
margin Z, it follows from equations (11), (12) and (14) that the reliability index β is given by 
a simple relationship  

 
2222 2

/
ERREER

ER
ZZ

σσρσσ

μμ
σμβ

++

−
==  (16) 

If the quantities R and E are mutually independent, then the coefficient of correlation 
ρRE vanishes (ρRE=0). Thus, the reliability index β is the distance of the mean μZ of the safety 
margin Z to the origin, given in the units of the standard deviation σZ.  
 
Example 3.  

Consider again the Example 2, in which the resistance R and the load effect E are 
mutually independent random variables (ρRE=0) having normal distribution. The resistance R 
has the mean μR = 100, variance σR = 10 (coefficient of variation is therefore only w = 0,10), 
and the effect of actions E has the mean μE = 80 and σE = 8 (all expressed in dimensionless 
units). It follows from equation (11) and (12) that  

 μZ = 100 – 80 = 20  

 81,12810 2222 =+=σ Z   

As both the basic variables R and E have normal distributions, the reliability index β 
follows directly from equation (16) 

 β = 20 / 12,81 = 1,56   

and the probability of failure follows from relation (8) 

 Pf = P(Z < 0) = ΦU(-1,56) = 0,059   
If the variables E and R are not normal, then the distribution of the safety margin G is 

not normal either and then the above-described procedure has to be modified. In a general 
case, numerical integration or transformation of both variables into variables with normal 
distribution can be used. The transformation into a normal distribution is primarily used in 
software products. 

 
An approximate simple procedure can be used for a first assessment of the failure 

probability Pf. The safety margin Z may be approximated by a three-parameter lognormal 
distribution. Assume that the distributions of E and R depend on the moment parameters μE, 
σE, ωE, μR, σR and ωR. The mean and variance of the safety margin Z may be assessed from 
the previous equations (11) and (12), which hold for variables with an arbitrary distribution. 
Assuming mutual independence of E and R, the skewness ωZ of the safety Z may be estimated 
using the approximate formula (see Annex A - Basic statistical concepts and techniques in 
this Handbook 2) 

 2/322

33

)( RR

EERR
Z σσ

ωσωσ
ω

+
−

=  (17) 

Then it is assumed that the safety margin Z can be described with sufficient accuracy 
by a log-normal distribution with determined moment parameters μZ, σZ and ωZ (equations 
(11), (12) and (17)). It shows that this approximation offers satisfactory results if the 
probability of failure is not too small.  
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Example 4. 
Consider a tie rod having a resistance R under a suspended load of weight E. Let R be 

a log-normal variable with origin at zero having the parameters (expressed again in relative 
dimensionless units) μR = 100 and σR = 10 (and therefore ωR = 0,301), E has Gumbel 
distribution with moment parameters μE = 50 and σE = 10 (for Gumbel distribution [9] has the 
positive skewness ωE = 1,14).  

The moment parameters of the safety margin are assessed according to equations (11), 
(12) and (17) 

 μZ = μR - μE = 100 – 50 = 50  

 14,141010 222222 =+=+= σσσ ERG   

 
( ) ( )

30,0
1010

14,110301,010
2/322

33

2/322

33

−=
+

×−×
=

+

−
=

σσ

ωσωσω
ER

EERR
Z   

For a standardized random variable it follows from equation (14) that 

 u0 = - μZ / σZ = - 50 / 14,14 = - 3,54   

For a log-normal distribution having the skewness μZ = - 0,30 it holds that 

 Pf = P(R < E) = ΦLN,U(-3,54) = 0,00101   

which corresponds to the reliability index β = 3,09. A more precise result obtained by 
application of the software VaP [7] is Pf = 0,00189.  

However, when skewness is not taken into account in the assessment of failure 
probability and the normal distribution is assumed, it follows that 

 Pf = P(R < E) = ΦU(-3,54) = 0,00020  
which differs significantly from the result when the log-normal distribution was assumed.  

Attached MATHCAD sheets StRod.mcd, DesVRod.mcd may be used to make all 
numerical calculations. 

 
 

3 EXACT SOLUTION FOR TWO RANDOM VARIABLES 
 
In the case of two random variables E and R having any distribution, the exact 

determination of the failure probability Pf, defined by equation (3), may be obtained by 
probability integration. Figure 5 is used to explain this procedure. Let the event A denote the 
occurrence of the action effect E in the differential interval <x, x+dx>. Probability of the event 
A is given as 

 P(A) = P(x < E < x+dx) = ϕE(x) dx  (18) 

Let us denote B as the event that resistance R occurs within the interval <-∞, x>. 
Probability of the event B is [9] given as  

 P(B) = P(R < x) = ΦR(x) (19) 
The differential increment of failure probability dPf corresponding to the occurrence 

of the variable E in the interval <x, x+dx> is given by the probability of the simultaneous 
occurrence of the events A and B, i.e. by the probability of their intersection A ∩ B. According 
to the principle of multiplication of probabilities [10], it holds that  

 dPf = P(A ∩ B) = P(A) P(B) = P(x < E < x+dx) P(R < x) = ΦR(x) ϕE(x) dx  (20) 
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The above-mentioned assumption of mutual independence of the variables E and R, 
and thus also of the events A and B, is applied here.  

 
 

Figure 5. Distribution of variables E and R. 
 
 

The integration of the differential relationship (20) over the interval in which both 
variables E and R occur simultaneously (generally the interval <-∞, ∞>) leads to the relation 

 xxxp ER d)()(∫
∞

∞−

ϕΦ=f  (21) 

the integration of the relation (21) usually has to be carried out numerically or using the 
simulation methods (e.g. direct Monte Carlo methods). 

Attached MATHCAD sheet PrLnLn.mcd offers a simple programme that can be used 
to evaluate the numerical integration of relation (21) assuming that both the variables E and R 
can be described (at least approximately) by the general (three-parameter) lognormal 
distribution.  
 
Example 5.  

The action effect E and the resistance R are described by a log-normal distribution 
with the same parameters as in Example 4 (the Gumbel distribution for E was simply 
substituted by the log-normal distribution having the same parameters). The approximate 
solution in Example 4, based on log-normal distribution with the lower bound at zero, leads to 
the probability of failure Pf = P(R < E) = ΦLN,U(-3,54) = 0,00101. The numerical integration 
according to relation (21) using the programme MATHCAD leads to a solution Pf = P(R < E) 
= 0,000792, the programme VaP suggests a solution Pf = P(R < E) = 0,000707, which can be 
considered as a very good approximation.  

The probability of failure Pf assessed by the direct integration may be determined 
using MATHCAD sheet PrLnLn.mcd for the given parameters of variables E and R (μR = 
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100, σR = 10, μE = 50 and σE = 10). Variation of probability of failure Pf with the coefficients 
of skewness ωE and ωR is shown in Figure 6.  

It follows from Figure 6 that the probability of failure Pf depends greatly on the 
skewnesses ωE and ωR (therefore on assumed theoretical models), and in practical conditions, 
can differ by several orders of magnitude, even when the means and standard deviations of 
the variables E and R remain the same.  

 

 
 
Figure 6. Probability of failure Pf versus the coefficients of skewness ωE and ωR for μR 

= 100, μR = 10, σE = 50 and σE = 10. 
 

It appears that the determination of the failure probability in the case of a simple 
example described by inequality (1), where only two random variables E and R are involved, 
is easy only when both variables are normally distributed. If they have other distributions, the 
exact solution is more complicated and the resulting values depend significantly on the 
assumed types of distributions. The approximate solution assuming for E and R a general 
(three parameter) lognormal distribution provides a good first estimate of the failure 
probability. The obtained values should be, however, verified by more exact procedures 
considering appropriate theoretical models of E and R.  
 
 
4  CONCLUDING REMARKS 
 

Elementary methods of the structural reliability can be used to assess the reliability of 
fundamental cases of two random variables when the limit state function is formulated as the 
difference between the resulting structural resistance and load effect.  

Basic principles of the reliability theory provide operational techniques that can be 
used for estimating the partial factors of basic variables. The assessment of various reliability 
measures in the new structural design codes is, however, partly based on historical and 
empirical experiences. Obviously the past experience depends on local conditions including 
climatic actions and traditionally used construction materials and, consequently, might be in 
different countries considerably diverse. That is why number of reliability elements and 
parameters in the present suite of European standards are open for national choice. 
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ATTACHMENTS 

 
1. MATHCAD sheet “SteelRod.mcd” 

Mathcad sheet SteelRod is intended to investigate an effect of the partial factor γG on 
reliability of a steel rod exposed to permanent load G. 

 
2. MATHCAD sheet “DesVRod.mcd” 

Mathcad sheet DesVRod is intended to investigate of sensitivity factor αE and αR and 
design values Ed and Rd. 

 
3. MATHCAD sheet “PrLnLn.mcd” 
 Mathcad sheet PrLnLn is intended for calculation of the failure probability Pf = 
P{E>R}based on approximation of E and R by three parameter lognormal distribution. 
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Attachment 1 - MATHCAD sheet “SteelRod.mcd” 

αg 1.35( ) 0.09=αg γG( )
αR σR γG( )3⋅ αE σE3⋅−

σg γG( )3
:=

σg 1.35( ) 0.17=μg 1.35( ) 0.77=σg γG( ) σR γG( )( )2
σE( )2

+:=

σR 1.35( ) 0.14=σE vE μE⋅:=σR γG( ) vR μR γG( )⋅:=μg γG( ) μR γG( ) μE−:=

4 Parameters of the reliability margin g = R - E

αE 2 vE⋅:=αR 3 vR⋅ vR3+:=Skewness of R for lognormal and E for gamma distribution: 

vE 0.1=vR 0.08=Check: vE vXS2 vXS2 vG2
⋅+ vG2

+:=vR vXR2 vXR2 vf2⋅+ vf2+:=

β1 1.35( ) 4.76=β1 γG( ) qnorm Pf1 γG( ) 0, 1,( )−:=Pf1 γG( ) plnorm 0 x0 γG( )− mg γG( ), sg γG( ),( ):=

x0 1.35( ) 4.85−=Check: x0 γG( ) μg γG( )
1

C γG( )
σg γG( )−:=sg γG( ) ln 1 C γG( )2+( ):=

mg γG( ) ln C γG( )( )− ln σg γG( )( )+ 0.5( ) ln 1 C γG( )2
+( )⋅−:=Parameters of transformed variable:

C γG( )
αg γG( )2 4+ αg γG( )+

⎛
⎝

⎞
⎠

1

3
αg γG( )2 4+ αg γG( )−

⎛
⎝

⎞
⎠

1

3
−

2

1

3

:=

Parameter C of three
parametr lognormal
distributon of g:

Reliability index assuming three parameter lognormal distribution of g (a refine estimate)

β0 1.35( ) 4.44=Check: Pf0 γG( ) pnorm β0 γG( )− 0, 1,( ):=β0 γG( )
μg γG( )
σg γG( )

:=

Reliability index assuming normal distribution of g (a first estimate)

5 Reliability assessment without integration

σG vG μG⋅:=vG 0.1:=μG Gk:=Parameters of G and f:

2 Parameters of basic varibles G and f

A 1.35( ) 6.32 10 3−×=Check: A γG( )
Gk γG⋅( )

fd
:=Design of the cross section area

fd
fk
γm

:=γm 1.10:=fk 235:=parameter( )γG 1.0 1.05, 1.6..:=Gk 1:=Design input data:

1 Design of a rod cross section area  A = Gd / fd

A steel rod under a permanent load G - parameter study of γG

CoV:

μE 1=μR 1.35( ) 1.77=μE μG μXS⋅:=μR γG( ) μf μXR⋅ A γG( )⋅:=The mean of R and E

3 Parameters of the resistance R and load effect E

vXS
σXS
μXS

:=vXR
σXR
μXR

:=σXR 0.00:=μXR 1:=σXS 0:=μXS 1:=Model uncertainty:

σf vf μf⋅:=vf 0.08:=μf ω fk⋅:=ω
280
235

:=
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Pfn γG( )
0

∞

xEn x( ) Rln x γG,( )
⌠
⎮
⌡

d:= βn γG( ) qnorm Pfn γG( ) 0, 1,( )−:=

E has gamma, R lognormal distribution 

Pfg γG( )
0

∞

xEg x( ) Rln x γG,( )
⌠
⎮
⌡

d:= βg γG( ) qnorm Pfg γG( ) 0, 1,( )−:=

7 Parametric study of γG

1 1.2 1.4 1.6
3

4

5

6
Effect of the partial factor of G

R
el

ia
bi

lit
y 

in
de

x

β0 γG( )

β1 γG( )

βg γG( )

βn γG( )

βt

γG

Check: Pf0 1.35( ) 4.51 10 6−×=

Pf1 1.35( ) 9.68 10 7−×=

Pfg 1.35( ) 1.98 10 6−×=

Pfn 1.35( ) 6.24 10 7−×=

β0 1.35( ) 4.44=

β1 1.35( ) 4.76=

βg 1.35( ) 4.61=

βn 1.35( ) 4.85=

Note: Reliability assessment assuming normal distribution for E and R seems to be on a safe side 
(leads to a lower bound for β], while assessment assuming three parameter distribution for the 
reliability margin g seems to provide a more realistic estimate. 

6 Reliability assessment using integration 

Assuming normal distribution for E: En x( ) dnorm x μE, σE,( ):=

Assuming gamma distribution for E: k
μE
σE

⎛
⎜
⎝

⎞
⎟
⎠

2
:= λ

μE

σE2
⎛
⎜
⎝

⎞
⎟
⎠

:= Eg x( ) dgamma λ x⋅ k,( ) λ⋅:=

Assuming lognormal distribution of R having the lower limit at a (0 default): 

a γG( ) μR γG( ) 0.0⋅:= C γG( )
σR γG( )

μR γG( ) a γG( )−( )
:= aR γG( ) C γG( )3 3 C γG( )⋅+:=

m γG( ) ln σR γG( )( ) ln C γG( )( )− 0.5( ) ln 1 C γG( )2
+( )⋅−:= s γG( ) ln 1 C γG( )2

+( ):=

Probability lognormal distribution of R Rln x γG,( ) plnorm x a γG( )−( ) m γG( ), s γG( ),[ ]:=

Failure probability Prob{R<E} and reliability index β βt 3.8:=

E has normal, R lognormal distribution 
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Attachment 2 - MATHCAD sheet “DesVRod.mcd” 
 

 

The mean of R and E μR γG( ) μf μXR⋅ A γG( )⋅:= μE μG μXS⋅:= μR 1.35( ) 1.77= μE 1=

CoV: vR vXR2 vXR2 vf2⋅+ vf2+:= vE vXS2 vXS2 vG2
⋅+ vG2

+:= Check: vR 0.08= vE 0.1=

Skewness of R for lognormal and E for gamma distribution: αR 3 vR⋅ vR3
+:= αE 2 vE⋅:=

4 Parameters of the reliability margin g = R - E

μg γG( ) μR γG( ) μE−:= σR γG( ) vR μR γG( )⋅:= σE vE μE⋅:= σR 1.35( ) 0.14=

σg γG( ) σR γG( )( )2
σE( )2

+:= μg 1.35( ) 0.77= σg 1.35( ) 0.17=

αg γG( )
αR σR γG( )3

⋅ αE σE3
⋅−

σg γG( )3
:= αg 1.35( ) 0.09=

5 Sensitivity coefficients α E and α R

αE γG( )
σE−

σg γG( )
:= αR γG( )

σR γG( )
σg γG( )

:=

1 1.2 1.4 1.6
0.4

0.6

0.8αE γG( )

αR γG( )

γG

Note that the sensitivity factor αE is shown with the oposite sign (as a positive quantity).

A steel rod under a permanent load G - sensitivity factors αE 
and αR

1 Design of a hanger cross section area  A = Gd / fd
Design input data: Gk 1:= γG 1.0 1.05, 1.6..:= parameter( ) fk 235:= γm 1.10:= fd

fk
γm

:=

Design of the cross section area A γG( )
Gk γG⋅( )

fd
:= Check: A 1.35( ) 6.32 10 3−×=

2 Parameters of basic variables G and f

Parameters of G and f: μG Gk:= vG 0.1:= σG vG μG⋅:= ω
280
235

:= μf ω fk⋅:= vf 0.08:= σf vf μf⋅:=

Model uncertainty: μXS 1:= σXS 0:= μXR 1:= σXR 0.00:= vXR
σXR
μXR

:= vXS
σXS
μXS

:=

3 Parameters of the resistance R and load effect E
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Notes: 1) Figure shows that the partial factor γ G should be greater than about 1,25 otherwise the 
design value of the load effect Ed would be greater than the design value of the resistance Rd. 

2) The design value of the resistance Rd determined assuming lognormal distribution with 
the lower bound at zero is greater than Rd determined assuming the normal distribution. 

Rd0ln 1.35( ) 1.39=

Rd0 1.35( ) 1.34=

Rd 1.35( ) 1.33=

Ed0 1.35( ) 1.27=

Ed 1.35( ) 1.22=Check: 

1 1.2 1.4 1.6
0.8

1

1.2

1.4

1.6

1.8

Ed γG( )

Rd γG( )

Ed0 γG( )

Rd0 γG( )

Rd0ln γG( )

γG

Rd0ln γG( ) μR γG( ) exp αR0− β vR⋅( )⋅:=

Rd0 γG( ) μR γG( ) αR0β σR γG( )⋅−:=Ed0 γG( ) μE αE0β σE⋅−:=

Rd γG( ) μR γG( ) αR γG( ) β σR γG( )⋅−:=Ed γG( ) μE αE γG( ) β σE⋅−:=

αR0 0.8:=αE0 0.7−:=β 3.8:=EC 1990 recommendation: 

6 Design values Ed and Rd
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Attachment 3 - MATHCAD sheet “PrLnLn.mcd” 

 

CR 0.3( ) =

Distribution bound x0R:
x0R αR( ) μR

σR
CR αR( )

− αR 0≠if

μR 6 σR⋅− otherwise

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= x0R 0.000( ) =

2. Integration bounds assuming αE>0, αR arbitrary: 

x0 αE αR,( ) max x0E αE( ) x0R αR( ),( ) αR 0≥if

x0E αE( ) otherwise

:= x0 0.608 0.301,( ) =

x1 αE αR,( ) μR 6 σR⋅+ αR 0≥if

x0R αR( ) otherwise

:= x0 0.608 1−,( ) =

x1 1 1−,( ) =

3. Transformation to the standardised normal distribution  Φ(u) (for any α): 

Standardised variable E: uE x( )
x μE−( )

σE
:= Transformed standardised variable E:

uuE x αE,( )
ln uE x( )

1
CE αE( )

+⎛⎜
⎝

⎞⎟
⎠

ln CE αE( ) 1 CE αE( )2
+⋅⎛

⎝
⎞
⎠+

sign αE( ) ln 1 CE αE( )2
+( )⋅

αE 0≠if

uE x( ) otherwise

:=

φE x αE,( ) dnorm uuE x αE,( ) 0, 1,( )

σE uE x( )
1

CE αE( )
+⋅ ln 1 CE αE( )2

+( )⋅

CE αE( ) 0≠if

dnorm uuE x αE,( ) 0, 1,( )
σE

otherwise

:= φE 50 0,( ) =

φE 50 0.0001,( ) =

Standardised variable R: uR x( )
x μR−( )

σR
:= Transformed standardised variable R:

Failure probability pf=P{E>R}
 for log-normal distribution LN(μ,σ,α) of E and R 

1. Input parameters for E and R : μE 50:= σE 10.:= αE 0 0.1, 2..:= x 0 0.1μE, 3μE..:= wE
σE
μE

:=

μR 100:= σR 10.:= αR 1− 0.9−, 2..:= x 0 0.1μR, 3μR..:= wR
σR
μR

:=

Distribution parameter C
given by the skewness αΕ: Check: 

CE αE( )
3

αE
2

4+ αE+⎛
⎝

⎞
⎠

3
αE

2
4+ αE−−

3 2
:= CE 0.301( ) =

Distribution bound x0E: x0E αE( ) μE
σE

CE αE( )
− αE 0≠if

μE 6 σE⋅− otherwise

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= x0E 0( ) =

Check: Distribution parameter CR
given by the skewness αR: 

CR αR( )
3

αR
2

4+ αR+⎛
⎝

⎞
⎠

3
αR

2
4+ αR−−

3 2
:=
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pf 0.608 0.0001,( ) 8.745 10 4−
×=pf αE αR,( )

x0 αE αR,( )

x1 αE αR,( )
xφE x αE,( ) ΦR x αR,( )⋅

⌠
⎮
⌡

d:=

Check: 
Failure probability pf (for positive α only):

ΦR x αR,( ) plnorm x x0R αR( )− mR αR( ), sR αR( ),( ):=Distribution function of R:

sR αR( ) ln 1 CR αR( )2
+( ):=mR αR( ) ln CR αR( )( )− ln σR( )+ 0.5( ) ln 1 CR αR( )2

+( )⋅−:=

φE 50 0.0001,( ) 0.04=φE x αE,( ) dlnorm x x0E αE( )− mE αE( ), sE αE( ),( ):=Probability density of E:

sE αE( ) ln 1 CE αE( )2
+( ):=mE αE( ) ln CE αE( )( )− ln σE( )+ 0.5( ) ln 1 CE αE( )2

+( )⋅−:=

5. Alternative procedure for determination of failure probability using built-in distribution 
function for log-normal distributiopn ΦLN,X(x) (for positive α only):

Figure 1. Failure probability pf=P{E>R} versus αE.

0 0.5 1 1.5 2
1 .10 5

1 .10 4

1 .10 3

0.01

pf 0.608 0.0001,( ) 8.745 10 4−
×=pf αE αR,( )

x0 αE αR,( )
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Summary 
  
Basic reliability elements specified in current standards for structural design 

commonly include failure probability related to a certain reference period T. Required 
reliability level of buildings and other civil engineering works is usually specified by the 
design (target) failure probability pd or by appropriate reliability index βd corresponding to a 
specified design working life Td (for example 50 years). In reliability verification the design 
values βd and Td are sometimes replaced with an alternative reliability index βa derived from 
the design values βd and Td for a convenient reference period Ta (for example 1 year). 

Submitted study clarifies relationships between the alternative elements βa, Ta and 
design values βd, Td, and indicates relevant procedures for reliability verification when 
alternative reference period Ta is considered. It is emphasised that verification based on βa, Ta 
should be distinguished from verification of temporary or auxiliary structures when the design 
working life Td itself is short. Theoretical consideration and numerical examples show that 
characteristic values and partial factors of basic variables describing material properties and 
self-weight are significantly dependent on the relevant reference period.  

 
 

1 INTRODUCTION 
 

1.1 Background documents 
Recent documents [1], national [2], [3] and international documents ([4] to [7]) 

provide general principles and guidance for application of probabilistic methods to structural 
designs. The latest European document [5] and international standards [6] and [7] also 
indicate a theoretical basis of the so called “partial factor method” and procedures for 
determination of partial factors of material properties and actions using probabilistic 
principles.  

The basic reliability elements considered in these procedures include probability of 
failure p (or equivalent reliability index β) corresponding to a certain reference period T used 
in verification of structural reliability. The reference period T used in verification may or may 
not coincide with the design working life Td, which is the time period during which a structure 
is required to perform adequately. When the reference period used in reliability verification is 
different from Td then it is called an alternative period and denoted in this study Ta.  

 
1.2 General Principles 

Basic probabilistic methods are used to analyse principles of reliability differentiation. 
Similarly as in Chapter I in this Handbook two essentially different cases are distinguished in 
the following: 

- an alternative reference period Ta (for example 1 or 5 years), which is different from 
the design working life Td (for example 50 years), is considered; this case is applicable when 
probabilistic models related to the period Ta are more credible than those related to Td; 
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- the design working life Td itself is short (for example 2, 5 or 10 years); this is the 
case of temporary or auxiliary structures and structures under a transient design situation 
(during execution or repair). 

In the following the principles of reliability differentiation specified in current 
international documents [5,6,7] and related procedures for determining reliability measures to 
be applied in verification cases considering various design-working lives are discussed. 
Appropriate reliability elements (characteristic values and partial factors) are derived for 
material properties, self-weight and climatic actions (temperature, snow and wind) taking into 
account time dependence of failure probability and the reliability index.  

 
 

2 BASIC RELIABILITY ELEMENTS 
 

The basic reliability measures include the probability of failure and reliability index as 
introduced in Chapter I and II in this Handbook. The probability of structural failure Pf can be 
generally defined as  
 Pf = P{Z(X) < 0} (1) 

The limit state (performance) function Z(X) is formulated in such a way that the 
reliable (safe) domain of a vector of basic variables X = X1, X2, ... , Xn corresponds to the 
inequality Z(X) > 0 while the failure domain to the complementary inequality Z(X) < 0.  A 
simple example of Z(X) describes the basic relationship between the resulting load effect E 
and resistance R  
 Z(X) = Z = R − E (2) 

The random variable Z in equation (2) is often called the reliability (safety) margin; its 
mean μZ, standard deviation σZ and skewness ωZ may be derived from corresponding 
characteristics of resulting variables R and E as indicated in Chapter II. 

Instead of the failure probability Pf, the reliability index β is frequently used in 
reliability consideration as an equivalent quantity to Pf. The reliability index β is related to the 
failure probability Pf as already indicated in Chapter I 

 Pf = Φ(−β) (3) 

In this equation, Φ( ) denotes the distribution function of standardised normal 
distribution. Note that, if the safety margin Z has normal distribution, then the reliability index 
may be determined simply as the ratio of μZ and σZ, thus β = μZ /σZ (in this case β denotes the 
distance of the mean μZ from the origin taking the standard deviation σZ as a unit). Chapter I 
shows the numerical relationship of both quantities. It should be emphasized that the failure 
probability Pf and the reliability index β represents fully the equivalent reliability measures 
with one to one mutual correspondence given by equation (3).  

In the recent European document [5] a design working life for common structures is 
considered as Td = 50 years, the reliability index for ultimate limit states βd = 3,8 corresponds 
to the design failure probability Pd = 7,2 × 10-5, for serviceability limit states βd = 1,5 and pd = 
6,7 × 10-2 (a more appropriate term is the “target probabilities” used in ISO documents [6] 
and [7]). These quantities are recommended as reasonable minimum requirements and it is 
emphasized that Pd and βd are formal conventional quantities only and may not correspond to 
actual frequency of failures. 

In design analysis of a structure it is generally required that  

 Pf ≤ Pd (4) 
or equivalently in terms of reliability index  
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 β  ≥ βd  (5) 
where pd denotes specified design (target) failure probability corresponding to the target 
reliability index βd.  

Conditions (4) or (5) have to be used by designers when probabilistic methods are 
applied for verification of structural reliability.  Indicative target values pd and βd are declared 
in some national standards (e.g. [2] and [3]) and recently also specified in international 
documents (e.g. [4] to [7]) for various design conditions (limit states, failure consequences 
and economic aspects). 

 
 

3 DESIGN WORKING LIFE AND RELIABILITY 
 
Design working life Td is an assumed period of time for which a structure or part of it 

is to be used for its intended purpose with anticipated maintenance but without major repair 
being necessary.  In recent documents of CEN [5] and ISO [6] indicative values of Td are 
provided for five categories of structures as shown in Chapter I of this Handbook.  

More detailed specification of structural categories and design working lives is 
available in the ISO documents [6, 7]. In general the design working lives indicated in [2] are 
greater (in some cases by 100 %) than those given in Chapter I. For example the design 
working life for temporary structures indicated in [2] is 15 years, for agricultural structures 50 
years, for apartment and office buildings 100 years, and for railway structures, dams, tunnels 
and other underground engineering works 120 years.  

Design failure probabilities pd are usually indicated in relation to the expected social 
and economical consequences. Table 1 shows classification of target reliability levels 
provided in EN 1990 [5]. Reliability indexes β are given for two reference periods T (1 year 
and 50 years) only, without any explicit link to the design working life Td. Similar β-values as 
in Table 1 are given in [3] for the ultimate limit states, for which, however, the design 
working life Td = 80 years (for building structures) is considered. 

It should be underlined that a couple of β values (βa and βd) specified in Table 1 for 
each reliability class (for 1 year and 50 years) correspond to the same reliability level. 
Practical application of these values depends on the time period Ta considered in the 
verification, which may be connected with available information concerning time variant 
vector of basic variables X = X1, X2, ..., Xn.  For example, if the reliability class 2 and 50 years 
design working period is considered, then the reliability index βd = 3,8 should be used in the 
verification of structural reliability. The same reliability level corresponding to class 2 is 
achieved when the time period Ta = 1 year and βa = 4,7 is used.  Thus, various reference 
periods Ta, in general different from the design working life Td, may be used for achieving a 
certain reliability level. 

 
Table 1. Reliability classification in accordance with CEN [5] 

Reliability index β Reliability 
classes 

Consequences for loss of 
human life, economical, 
social and environmental 
consequences 

βa for Ta= 
1 year 

βd for Td= 
50 years 

Examples of buildings and 
civil engineering works 

 

3 – high High 5,2 4,3 Bridges, public buildings 
2 – normal Medium 4,7 3,8 Residential and office 

buildings 
1 – low Low 4,2 3,3 Agricultural buildings, 

greenhouses 
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Similar target βd values are provided in ISO 2394 [6] for the design working life Td 
(called in ISO “life time”) without specification of any particular value of Td.  As indicated in 
Table 2, two factors are considered for reliability differentiation in [6]: relative costs of safety 
measures and consequences of failure. 

 
Table 2. Target reliability index βd for the design working life Td given in ISO 2394 [6] 

Consequences of failure Relative costs of safety 
measures  small some moderate great 
High 0 1,5 2,3 3,1 
Moderate 1,3 2,3 3,1 3,8 
Low 2,3 3,1 3,8 4,3 
 

It appears that available documents do not provide an explicit guidance on how to take 
into account the design working life Td. Both international documents CEN [5] and ISO [6] 
give the target value βd for specific reference periods T, however, no explicit rule is offered 
for adjustment of target value βd to different working design lives Td recommended for 
various types of construction works. 

Nevertheless, some indication is provided in another ISO document [7] for assessment 
of existing structures where it is recommended that reliability levels for any residual lifetime 
could be similar to those considered for the design working life Td in the case of a new 
structure. Consequently, similar reliability levels (expressed in terms of probability pd or 
reliability index βd) may be considered when designing structures for different design 
working lives Td, for example for Td = 50 and Td = 25 years.  

 
 

4 VARIATION OF FAILURE PROBABILITY WITH TIME 
 
When the vector of basic variables X = X1, X2, ... , Xm is time variant, then failure 

probability p is also time variant and should  always be related to a certain reference period T, 
which may be generally different from the design working life Td. Considering a structure of a 
given reliability level, the design failure probability pd = pn related to a reference period Tn = n 
T1 can be derived from the alternative probability pa = p1 corresponding to Ta = T1 (to simplify 
notation note that previously used subscript "d" corresponds now to "n" and subscript "a" to 
"1") using approximate relationship given in [6], [7]  

 Pn = 1 − (1 − P1)n (6) 
For very small probabilities, this relationship could be further simplified as pn = p1 Tn / 

T1. Time periods T1 and Tn may have an arbitrary length and n = Tn / T1 may not be an integer; 
T1 is, however, often one year.  Probability pn increases (almost linearly) with Tn. 

It follows from equation (6) that reliability indexes β1 = βa and βn = βd, given in 
accordance to equation (3) as p1 = Φ(−β1) and pn = Φ(−βn) are related as follows [5]  

 Φ(βn) = [Φ(β1)]n (7) 

Here Φ(.) denotes the distribution function of standardised normal distribution. Figure 
1 shows variation of βn with β1 for n = 5, 25, 50 and 100.  Note that, if the reference period T1 
is one year, then n indicates the number of years of the reference period Tn (n = Tn). 
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Figure 1 confirms data indicated in Table 1. For example, if the target reliability level 
of a structure is specified by β50 = 3,8 for the design working life Td = Tn = 50 years, then it 
could be verified using reference period Ta = T1 =1 year and βa = β1 =4,7.  When, however, the 
same reliability index 3,8 is specified for a structure having a design working life Tn = 25 
years only, thus β25 = 3,8, then the reliability of this structure could be verified using an 
alternative reference period T1 = 1 year and reliability index β1 = 4,5, similarly when β5 = 3,8 
then β1 = 4,2 (see Figure 1). 

 

Figure 1. Variation of βn with β1 for n = 5, 25, 50 and 100 
 
Note that, if 1-year period would be used for specification of the target reliability level 

of a structure, then Figure 1 provides information on the resulting failure probability 
corresponding to a given working life Tn. For example, if the target reliability level is 
specified by the reliability index β1 = 4,7 (corresponding to the probability p1 = 1,3 × 10-6), 
then (as already mentioned) the reliability level of a structure having a working life, Tn = 50 
years is characterised by β50 = 3,8.  Similarly when a period Tn = 5 years is used, then β5 = 4,3 
or when Tn = 100 years, then β100 = 3,6. 

So, the reliability level of a structure can be specified using different time periods T, 
which may not necessarily coincide with the design working life Td.  This may be useful when 
experimental data concerning time variant basic variables are available for a specific 
reference period T (for example 1 or 5 years) that is different from the design working life Td. 
In such a case, however, all the basic variables (including those that are time independent) 
should be considered by appropriate design values related to the same reference period T.  
The following simple example indicates the effect of using a reference period T different from 
the design working life considering a resistance variable (strength) having lognormal 
distribution. 

 
 

5 PARTIAL FACTOR OF A MATERIAL PROPERTY 
 

Consider a resistance variable R (strength) having lognormal distribution.  When an 
alternative reference period Ta instead of the design working life Td is used in reliability 
verification of a structure, then the design value of R should be determined for Ta instead of 
Td. It is assumed that the characteristic value Rk of R is defined as its 5% fractile [5], [6] a [7]. 
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Then of the resistance variable R, the characteristic value Rk and design value Rd are defined 
as [4], [5] 

 Rk = μR × exp (− 1,645 × VR) (8) 

 Rd = μR × exp (−αR × βa × VR)  (9) 

Taking into account equations (8) and (9) it follows that the partial factor is given as  

 γR = Rk / Rd = exp (− 1,645 × VR) / exp (−αR × βa × VR) (10) 
Considering selected values of the coefficient of variation VR, Figure 2 shows the 

partial factor γR for lognormal distribution of R (equation (10)). 
It follows from Figure 2 that when reliability of a structure is verified using a short 

alternative reference period Ta (for example for example for Ta = 1 year when βa = 4,7), the 
partial factor γR should generally be greater than in the case when the whole design working 
life Td (for example for Td = 50 when βd = 3,8) is considered. It may be noted that the partial 
factor γR of material property R increases with the increasing value of the reliability index βa. 

Similar conclusions can be expected for partial factors of other basic variables, in 
particular for partial factors of permanent actions.  
 

Figure 2. Variation of γR with βa for selected coefficients of variation (R lognormal) 
 

 
6 PARTIAL FACTORS OF SELF-WEIGHT 

 
Consider a self-weight G having normal distribution.  Similarly as in the case of 

material property, when an alternative reference period Ta instead of the design working life 
Td is used in reliability verification of a structure, then the design value of G should be 
determined for Ta instead of Td. The characteristic value Gk of G is defined as the mean μG 
[5], [6] and [7]: 

 Gk = μG (11) 

The design value Gd is given as [4], [5]  
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 Gd = μG − αG × β × σG = μG + 0,7× βa × σG = μG(1 + 0,7× βa × VG) (12) 

In equation (11) and (12) μG denotes the mean, σG the standard deviation, VG the coefficient 
of variation and αG = − 0,7 the sensitivity factor of G. The partial factor γG of G is defined as 
[5], [6] a [7] 

 γG = Gd / Gk (13) 

Taking into account equations (11) and (12) it follows from (13) that 

 γG = (1 + 0,7× βa × VG) (14) 

Figure 3 shows variation of the partial factor γG with the reliability index βa for 
selected values of the coefficient of variation VG = 0,05; 0,10; 0,15 and 0,20. Note that γG = 
1,35 (recommended in EN 1990 [5]) corresponds approximately to the reliability index βa = 
3,8 if the coefficient of variation is about 0,1 (the value in EN 1990 [5] was increased by 5% 
to take into account model uncertainty). 

 

 
Figure 3. Variation of γG with βa and coefficient of variation VG  (G normal). 
 
 
Assuming the coefficient of variation 0,1 for both the resistance R and the self weight 

G Figures 2 and 3 indicate that the partial factor of self-weight γG varies slightly more 
significantly with βa - values than with the partial factor γR of resistance variable R. This 
finding is, however, dependent on the distributions assumed for both variables. 

 
 

7 CLIMATIC ACTIONS AND IMPOSED LOADS 
 
Drafts of European documents for climatic actions due to temperature [8], snow [9] 

and wind [10] indicate possible reduction of characteristic values Qk for temperature, snow 
load and wind speed in case of shorter reference (return) period (for example 5 years) than 50 
years considered in normal cases. Such a reduction may be applied in transient design 
situations (for example during execution).  
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The following relationships for thermal, snow and wind actions, respectively, are 
recommended in relevant Parts of Eurocode EN 1991:  

(a) In accordance with EN 1991-1-5 [8] Thermal actions, the maximum and minimum 
shade air temperature Tmax,50/Tmin,50 for 50-year return period may be reduced to Tmax,n/ Tmin,n 
for n-year return period using the following formulae  

 Tmax,n = k Tmax,50 , for k = {k1 – k2 ln[-ln(1-1/n)]} (15) 

 Tmin,n = k Tmin,50,  for k = {k3 + k4 ln[-ln(1-1/n)]} (16) 

where Tmax,n/Tmin,n is the maximum/minimum, and the coefficients k1 = 0,781, k2 = 0,056, k3 = 
0,393, k4 = -0,156 might be used (based on data of UK [11]), 

(b) In accordance with EN 1991-1-3 [9] Snow actions the characteristic value of snow 
action sk,n corresponding to the return period of n years is given using Gumbel distribution as  

 sk,n = k sk,50, where k =
[ ]

[ ]57722,0))98,0ln(ln(61

57722,0))1ln(ln(61

+−−

+−−−

π

π

s

s

V

pV
 (17) 

where sk,50 is the characteristic snow load on the ground for 50-year return period and sk,n for 
n-year return period, p denotes here the probability of sk,n being exceeded corresponding to n 
years of return period and Vs is the coefficient of variation of annual maximum snow load, 

(c) In accordance with EN 1991-1-4 [10] the basic wind speed vb,n having the return 
period n years may be assessed using semi-empirical expressions  

 vb,n = k vb,50, where k  = 
5,0

))98,0ln(ln(1
))1ln(ln(1

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−−
K

pK  (18) 

where vb,50 is the basic wind velocity for 50-year return period and vb,n for n-year return period 
and p denotes here the probability of vb,n being exceeded corresponding to n years of return 
period. The constant K in equation (18) follows from Gumbel distribution as K = Vv√6/π, 
where Vv denotes coefficient of variation of annual wind speed. An approximate value K = 0,2 
(which corresponds to the coefficient of variation Vv= 0,26) is used in the following 
comparison of reduction coefficients k for considered climatic actions. 

Table 3 shows reduction coefficients k for climatic actions (applied in a general 
relationship Qk,n = k Qk,50) for selected return periods of n - years.  

 
Table 3. Reduction coefficient k for climatic actions (Qk,n = k Qk,50) for different return 
periods of n - years. 

Reduction coefficient k for Return period 

of n-years 

p 

Tmax,n Tmin,n sn,n vb,n 

2 years 0,5 0,8 0,45 0,64 0,77 

5 years 0,2 0,86 0,63 0,75 0,85 

10 years 0,1 0,91 0,74 0,83 0,90 

50 years 0,02 1 1 1 1 
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It follows from Table 3 that the characteristic value of climatic actions may be 
considerably reduced if shorter reference period is considered in the design. For example for 
5-year return period of action due to snow or wind reduces to 75 or 85 % of the characteristic 
values for 50-year return period, similarly the characteristic value of the maximum shade air 
temperature to 86%, the minimum shade air temperature even to 63%. Note that in 
verification of bridge decks during execution phases the characteristic values of uniform 
temperature components are derived from shade air temperature [8].  

It should be noted that no reduction of partial factors for load is indicated in 
documents [8], [9] and [10]. Thus, the same reliability level as for 50-year design working life 
described by pd = 7,2 × 10− 5 (βd = 3,8) may be considered also for the reference period T = n 
years. Certainly, a different reliability level (for example reduced to βd < 3,8) can be chosen 
taking into account economic and other aspects in accordance to the principles of reliability 
differentiation discussed above. 

Imposed load could be possibly also reduced when short reference time is considered 
similarly as climatic actions. Some statistical data are available in documents of JCSS [12]. 
However, a variety of random properties of different types of imposed loads make it very 
difficult to formulate general rules. Unless convincing data are available the characteristic 
values specified in current documents may be accepted without any reduction.  

 
 

8 EXAMPLES 
 

Consider a steel structure having the design working life Td = 50 years, for which the 
target failure probability is specified as pd = 7,2 × 10− 5 (βd = 3,8). Failure probability p for the 
alternative reference period Ta = 1 year, which is considered in design due to data concerning 
actions, will be lower than the target failure probability pd (p < pd and β > βd); from equation 
(6): 

 pa = 1 - (1-7,2 × 10− 5 )1/ 50 = 1,44 × 10− 6  
When the reference period Ta = T1 = 1 year is considered in design verification, then 

the reliability index β follows from equation (7) as 

 β1 = − Φ-1(1,44 × 10− 6) = 4,7  

Reliability index β1 is greater than the target value βd = 3,8 specified for the design working 
life Td = 50 years.  

Using equation (10) the partial safety factor γR for Ta = T1 = 1 year assuming the 
coefficient of variation VR = 0,08 (corresponding to the common variability of strength of 
structural steel) the partial safety factor is given as (see also Figure 2)   

 γR = exp (− 1,645 × 0,08) / exp (− 0,8 × 4,7 × 0,08) = 1,18 

Note that when the design working life Td = 50 is considered in reliability verification then: 

 γR = exp (− 1,645 × 0,08) / exp (− 0,8 × 3,8 × 0,08) = 1,12 

Obviously, the partial factor γR increases with the decreasing reference period Ta.  
The partial factor of self-weight γG is given by equation (14).  Assume again, that the 

specified reliability level for 50-year design working life is given by βd = 3,8.  Assuming the 
coefficient of variation VG = 0,1 and considering the one year time period for reliability 
verification (β1 = βa = 4,7), then the partial factor γG that should be used is 

 γG = (1 + 0,7 × 4,7 × 0,1) = 1,33 
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If the verification period is equal to the design working life (βd = βa = β50 = 3,8), then  

 γG = (1 + 0,7 ×3,8 × 0,1) = 1,27 

Thus, the variation in γG is less significant than the variation in γR (see also Figure 3). 
A different task is reliability verification of an agricultural structure having the design 

working life Td = 25 years, for which the target reliability index can be decreased to βd = 3,3 
(see Table 1). It follows from equation (10) that the partial factor γR for Td = 25 is  

 γR = exp (− 1,645 × 0,08) / exp (− 0,8 × 3,3 × 0,08) = 1,08 

The partial factor γR may, therefore, be decreased from 1,15 to about 1,1. However it 
should be emphasized that this reduction of γR is due to a reduced target reliability index βd = 
3,3 and not due to a shorter design working life Td = 25 instead of the usual Td = 50 years. 

Annex A includes MATHCAD Sheet “GammaRG” that can be used to make 
numerical calculations.  
 
 
9 CONCLUDING REMARKS 
 
(1) In present international documents the target values of failure are related to economic 

aspects of safety measures and consequences of structural failure only vaguely, without 
any explicit relation to various design working lives Td for different types of structures. 

(2) When alternative failure probability pa is derived for a suitable reference period Ta from 
the target failure probability pd and design working life Td, partial factors and 
characteristic values of variable actions for pa and Ta should also be specified.  

(3) For temporary structures, with a short design working life Td, the target failure probability 
pd can be specified in accordance with the general principles of reliability differentiation; 
reliability elements for basic variables should be derived for specified pd and Td.  

(4) The partial factors γ derived for an alternative reference period Ta different from Td may 
vary considerably from the values corresponding to the design working life Td depending 
on Ta and distributions of relevant basic variables. 

(5) The partial factor of self-weight γG corresponding to an alternative reference period Ta 
varies with βa-values less significantly than the partial factor of material property γR. 

(6) Partial factors γR derived for an alternative reference period Ta of one-year may be 
considerably greater than γR specified for the design working life Td.  

(7) Following recommendations of Eurocodes, the characteristic value for climatic actions 
due to snow corresponding to 5-year return (reference) period may be reduced to 75 % of 
the characteristic values for 50-year return period, similarly the characteristic value of 
wind speed may be reduced to 85 %, the maximum temperature to 86%, the minimum 
temperature to 63%.  
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ATTACHMENTS 
 
1. MATHCAD sheet “GammaRG.mcd” 
 MATHCAD sheet Gamma is intended for determination of the partial factor γR of the 
resistance R and the partial factor γG of the permanent load G. 
2. MATHCAD sheet ”PSI0.mcd” 

MATHCAD sheet PSI0 is intended for determination of the Combination factor ψ0 
for accompanying action. 
3. MATHCAD sheet ”PSI12.mcd” 

MATHCAD sheet PSI12 is intended for determination of the combination factor ψ12 
for accompanying action. 
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Attachment 1 - MATHCAD sheet “Gammarg.mcd” 

 
 

ξdn β V,( ) 1 βR β( ) V⋅−( ):= ξdn 3.8 0.1,( ) 0.696=

Normal distribution ξkln V( )
exp k−( ) ln 1 V2+( )⋅⎡⎣ ⎤⎦

1 V2
+

:= ξdln V( )
exp d−( ) ln 1 V2+( )⋅⎡⎣ ⎤⎦

1 V2
+

:=

ξkn 0.1( ) 0.835=
ξdln β V,( ) exp βR β( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2+

:=
ξdln 3.8 0.1,( ) 0.735=

GammaR γRn β V,( ) ξkn V( )
ξdn β V,( ):= γRln β V,( ) ξkln V( )

ξdln β V,( ):= γRn 3.8 0.1,( ) 1.2=

0 2 4
0.5

1

1.5

γRn β 0.05,( )

γRn β 0.1,( )

γRn β 0.15,( )

β

0 2 4
0.5

1

1.5

γRln β 0.05,( )

γRln β 0.1,( )

γRln β 0.15,( )

β

GammaG for permanent load assuming normal distribution

γGn β V,( ) 1 βE β( ) V⋅−:= γRn 3.8 0.1,( ) 1.2=

0 2 4
1

1.2

1.4
γGn β 0.05,( )

γGn β 0.1,( )

γGn β 0.15,( )

β

0 0.2 0.4
1

2γGn 3.3 V,( )

γGn 3.8 V,( )

γGn 4.3 V,( )

V

GammaR, gammaG for a theoretical model 
MATHCAD sheet for determination of the charactreistic, design values and partial factors γ R and  γG.

Coeficients of fractile estimation given in EN 1990 

5% fractile V uknown k 1.65:=

0,1 % fractile V unknown d 3.09:=

Sensitivity factors: αR 0.8:= αE 0.7−:= βR β( ) β αR⋅:= βE β( ) β αE⋅:=

Prameters: β 0 0.1, 5..:= V 0 0.1, 0.5..:=

Characteristic and design values (relative values related to the mean ) xk=ξkσ*μx, xd=ξds∗μx

Normal distribution ξkn V( ) 1 k V⋅−( ):=
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Attachment 2 - MATHCAD sheet ”PSI0.MCD” 

MATHCAD sheet "PSI0"
for calculating PSI 0 assuming theoretical models 

Combination factor ψ0 for accompanying action 
1 Input data V is coefficient of variability of the accompanying action related to the reference period T

(50 years), r = T/T1 where T1 is the greater of the of basic periods actions to be combined
(for example 5, 7, 10, 50)   

Range variables V 0.0 0.05, 1.0..:= r 1 50..:= β 3.8:= (reliability index) 

2 Factor ψ0 for normal distribution:

Formula following Turkstra's rule ψ0 = F-1(Φ(0,4*0,7 β)r)/F-1(Φ(0,7 β)):

ψ0n V r,( )
1 qnorm pnorm 0.28 β⋅ 0, 1,( )r

0, 1,( ) V⋅+

1 0.7β V⋅+
:= Check: ψ0n 0.15 7,( ) 0.67=

Approximation in EC 1990

ψ0na V r,( )
1 0.28 β⋅ 0.7 ln r( )⋅−( )V+

1 0.7β V⋅+
:= ψ0na 0.15 7,( ) 0.683=

3 Factor ψ0 for Gumbel distribution:

ψ0g V r,( )
1 0.78 V⋅ 0.58 ln ln pnorm 0.28 β⋅ 0, 1,( )( )−( )+ ln r( )+( )⋅−

1 0.78 V⋅ 0.58 ln ln pnorm 0.7 β⋅ 0, 1,( )( )−( )+( )⋅−
:= ψ0g 0.15 7,( ) 0.584=

4 General ψ0 = F-1(Φ(0,4*0,7 βc)r)/F-1(Φ(0,7 βc)r): βc r( ) qnorm
pnorm 0.7− β⋅ 0, 1,( )

r
0, 1,⎛⎜

⎝
⎞⎟
⎠

−:=

ψ0d V r,( )
qgamma pnorm 0.4 βc r( )⋅ 0, 1,( )r( ) V 2−

,⎡⎣ ⎤⎦

qgamma pnorm βc r( ) 0, 1,( )r
V 2−,( ):= ψ0d 0.3 7,( ) 0.488= βc 7( ) 3.259=

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ψ0g V 7,( )

ψ0n V 7,( )

ψ0na V 7,( )

ψ0d V 7,( )

V
.

Figure 1. Variation of ψ0 with V for selected distributions. 

Check: V 0.1 0.2, 0.5..:= V
0.1
0.2

0.3

0.4
0.5

= ψ0n V 10,( )
0.727
0.548

0.423

0.33
0.258

= ψ0na V 10,( )
0.747
0.581

0.465

0.378
0.312

= ψ0g V 10,( )
0.664
0.474

0.352

0.268
0.205

=

Note. Gumbel distribution
leads to the lowest ψ0 
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4. Combination factor ψ0 , for time sensitivity factor αT < 1, V refers to period T (50 years)

N 10:= αT 0.5:= V 0 0.1, 1..:=

ψ0g β V, N, αT,( ) 1 0.78 V⋅ 0.58 ln ln pnorm 0.28 β⋅ 0, 1,( )( )−( )+ αT ln N( )+( )⋅−

1 0.78 V⋅ 0.58 ln ln pnorm 0.7β 0, 1,( )( )−( )+( )⋅−
:=

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

ψ0g 3.8 V, N, 0.5,( )

ψ0g 3.8 V, N, 0.6,( )

ψ0g 3.8 V, N, 0.7,( )

ψ0g 3.8 V, N, 1,( )

V
Figure 2. Variation of ψ0 with V for Gumbel distribution and factors αT. 

.N 7:= αT 0 0.1, 1..:= V 0.3:=Variation of ψQ with αT

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

ψ0g 3.3 V, N, αT,( )

ψ0g 3.8 V, N, αT,( )

ψ0g 4.3 V, N, αT,( )

αT

Figure 3. Variation of ψ0 with αT for Gumbel distribution and reliability indeces β . 
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Attachment 3 - MATHCAD sheet ”PSI12.MCD” 
MATHCAD SHEET PSI12 

Combination factor ψ12  for accompanying action 

1 Input data V is coefficient of variability of the accompanying action related to annual extremes.    

Coefficient of variation referred to point in time distribution w 0 0.1, 1.1..:=

Probability ρ = 1 - η / q for determining Q1 ρ 0 0.02, 1.01..:=

Rreliability index 
β 3.8:=

2. Factor ψ12 for normal distribution

ψ12 w ρ,( ) 1 qnorm ρ 0, 1,( ) w⋅+

1 qnorm 0.98 0, 1,( ) w⋅+
:= ψ12 0.5 0.5,( ) 0.493=

3 Factor ψ12 for Gumbel distribution:

ψ12g w ρ,( ) 1 0.78 w⋅ 0.58 ln ln ρ( )−( )+( )⋅−

1 0.78 w⋅ 0.58 ln ln 0.98( )−( )+( )⋅−
:= ψ12g 0.5 0.5,( ) 0.399=

4 Comparison of ψ12 for normal and Gumbel distribution:

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

ψ12g w 0.5,( )

ψ12 w 0.5,( )

w

.

Figure 1. Variation of ψ12 factor with the coefficient of variation V assuming the
normal and Gumbel distribution  

The Gumbel distribution leads to a lower ψ12 factor than the normal distribution  
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5 Variation of ψ12 with the probability  ρ  assuming Gumbel distribution:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

.

Figure 2. Variation of ψ12 with the probability ρ for selected coefficients of variation V
assuming Gumbel distribution.  

Examples of probability ρ = 1 - η / q where η is fraction of the refence period (0.01 or 0.5) during which
Q1 and Q2 are exceeded, p probabilioty of Q being non zero   
 - imposed w=1.1,

short term ψ1: on 18 days a year  ρ = 1 - η / q = 1- 0.01/0.05  ~ 0.8  
 long term  ψ2: almost  always on    ρ = 1 - η / q = 1- 0.5/1        ~ 0.5  

 - wind w=0.5, ψ1: 10x8 hours a year       ρ = 1 - η / q = 1- 0.01/0.009 ~ 0.1  
 ρ = 1 - η / q = 1- 0.5/0.009   ~ NA >> 0   ψ2 ~ 0.0

 - snow w=0.7, on 5 days a year              ρ = 1 - η / q = 1- 0.01/0.014 ~ 0.3          ψ1~ 0.2
 ρ = 1 - η / q = 1- 0.5/0.014    ~ NA >> 0   ψ2 ∼ 0.0

.

5 Variation of ψ12 with the probability  η  and q  assuming Gumbel distribution:

Probability of Q being non zero q 0 0.01, 1..:=

ψ12g w η, q,( )
1 0.78 w⋅ 0.58 ln ln 1

η

q
−⎛⎜

⎝
⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

+⎛⎜
⎝

⎞⎟
⎠

⋅−

1 0.78 w⋅ 0.58 ln ln 0.98( )−( )+( )⋅−
:= ψ12g 0.5 0.5, 0.50001,( ) 0.067−=
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0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

ψ12g 1.1 0.01, q,( )

ψ12g 0.5 0.01, q,( )

ψ12g 1.1 0.5, q,( )

ψ12g 0.5 0.5, q,( )

q

Figure 3. Variation of ψ12 with the probability q for selected coefficients of variation V
and fraction η assuming Gumbel distribution.  
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CHAPTER IV - DESIGN ASSISTED BY TESTING 
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Summary 
 

Under particular circumstances it may be favorable or necessary to carry out tests in 
order to obtain certain design parameters. Typical parameters determined from the tests are 
actions on the structure, resistance of the structure or structural component and material 
properties. Tests can be performed also to calibrate parameters in the theoretical model of 
resistance. The design value of the parameter is obtained from the test results as the estimated 
value of a certain fractile of the parameter in question. The procedures are explained for the 
determination of a single property and for the determination of a probabilistic model of 
resistance. 

 
 
1 INTRODUCTION 
 
1.1 Background materials 

The section 5.2 of the European standard EN 1990 [1] mentions briefly the most 
general principles of the design assisted by testing and refers to Annex D of the same 
standard, where the procedures are dealt with in detail. The international standard ISO 2394 
[2] also explains the procedures of the design assisted by testing in its Annex D. The two 
standards differ in a number of details regarding this subject. Some insight in the derivation of 
the statistical formulations is given in the international standard ISO 12491 [3] and in 
statistical literature (e.g. [5]).  
 
1.2 General principles 

Under particular circumstances it may be favorable or necessary to carry out the tests 
in order to obtain certain design parameters. The examples of possible such circumstances 
include:  

• calculation models are lacking or are inadequate; 
• large number of similar components will be used; 
• cases when the calculation model leads to very conservative results; 
• derivation of new design formulae;  
• confirmation of assumptions made in the design.  

 
The unknown quantities which are evaluated as a result of the tests may be  

• actions on the structure (e.g. wind loads);  
• structural response under loading or accidental effect;  
• strength or stiffness of the structure or structural element.  

 
The level of reliability of a structure designed by testing should be at least the same as 

for structures designed only by calculation models.  
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The evaluation of test results should be based on statistical methods. Test results 
should in principle include probability distribution of unknown quantities, including the 
statistical uncertainties. This distribution is the base for obtaining the design values and partial 
factors. The classical statistical interpretation is possible if a large series of tests is performed, 
or a smaller series of tests is carried out in order to calibrate a model with one or more 
parameters. When only a small number of tests are performed, no classical statistical 
interpretation is possible. With the prior information about the distribution of the investigated 
quantities it is possible to interpret the test results as statistical using Bayesian procedures.  

 
The design values for a material property, a model parameter or resistance should be 

derived from the tests either by (a) assessing the characteristic value and applying the 
appropriate partial and conversion factors, or by (b) direct determination of the design value 
implicitly or explicitly accounting for reliability required and conversion of results.  

The derivation of the characteristic value should take into account the scatter of test 
data, statistical uncertainty associated with the number of tests and prior statistical knowledge. 
The partial factors should be taken from the appropriate Eurocode. The calculation model 
should take into account for differences between test arrangement and real behavior.  

In case when method (b) is used, the relevant limit states and the required level or 
reliability should be accounted for.  
 
1.3 Preliminary statistical concepts 

The basic idea behind the expressions given for the determination of design values 
from the tests is the following: the values x1,x2,...,xn of the sample (for example the values 
obtained in n realizations of the test) can be regarded as n observed values of the same 
random variable X. However, we may equally well regard these n values as a single 
observation of n random variables X1,X2,...,Xn (a random vector X) that have the same 
distribution (the distribution of X) and are independent, since sample values are assumed to be 
independent.  
 
Example 1. 

When testing n samples we obtained values x1,x2,...,xn for the parameter X. If we 
assume that the parameter X is random variable with the mean μ and the standard deviation σ, 
what is the mean m and the standard deviation s of the average value of the sample? 

To answer this, we will make use of one of the theorems in probability theory: if we 
have n independent random variables X1,X2,...,Xn and ai are arbitrary numbers, then the 
following expressions hold:  

 E(Σ(aiXi))=ΣaiE(Xi) (1) 

 D(Σ(aiXi))=Σai
2D(Xi) (2) 

where E(X) and D(X) represent the mean value (expectation) and the variance (dispersion) of 
the random variable X. The statement about the mean value holds even if the variables XI are 
not independent. Note also, that X is distributed arbitrarily. 

We can look at the sample x1,x2,...,xn as a realization of the random variables 
X1,X2,...,Xn. Then M=Σ(Xi)/n is also a random variable whose realization is the average value 
of the sample. If we put ai=1/n in the above equations, we get the expressions for the mean m 
and standard deviation s of the sample average value as follows:  

 m = E(M) = E(Σ(Xi)/n) = (ΣE(Xi))/n = nμ /n =μ (3) 

 s2=D(M) = D(Σ(Xi)/n) = (ΣD(Xi))/n2 = nσ2 /n2 =σ2/n (4) 
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We see that that if the number of samples (tests) increases, the expected value of the mean of 
the average value stays the same (and equal to the mean of the parameter we are testing), but 
the standard deviation decreases with the square root of the number of samples. The 
coefficient of variation of the average value of the sample is  

 VM = s/m = σ/(μ√n) = VX/√n (5) 
and also decreases with the number of samples. The ratio VM/VX is shown on the Figure 1. 

 
Figure 1. Ratio VM /VX as a function of the number of samples. VM is the coefficient of 

variation of the average value of the sample and VX is coefficient of variation of the measured 
parameter. 

 
As has been already mentioned, no statement has been given about the distribution of 

the parameter X. The above formulae are valid for arbitrary distribution. If the random 
variable X is distributed normally, then the sum ΣXi is also distributed normally and so is the 
mean M. This follows from the fact that a linear combination of several normal random 
variables is also a normal random variable (even if these variables are not independent, see 
e.g. [5]). The similar also holds for a log-normal distribution: if the random variable X is 
distributed log-normally, then the mean M is also distributed log-normally. This is a direct 
consequence of the definition: if X is normal random variable, then Y=ln(X) is log-normal 
random variable. 
 
Example 2. 

In tensile tests the yield stress σY and the tensile strength σm of N = 45 specimens of 
same (steel) material have been measured. Specimens were cylindrical with diameter d. The 
Table 1 gives the measured values (units are mm and MPa). For each of the random parameter 
σY , σm and d compute the coefficient of variation Vn of the average value of samples 
n=1,2,…,N and, assuming that V=VN is the coefficient of variation of the particular parameter, 
plot a ratio Vn/V as a function of the number of samples n. Compare with the equation (5). 
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Table 1. The results of the tensile tests. 
n d σY σm n d σY σm n d σY σm n n σY σm 

1 7,98 816 924 13 7,98 832 949 25 8 818 907 37 7,98 829 930 
2 8 845 944 14 7,98 811 932 26 7,98 828 940 38 7,98 810 904 
3 8 832 948 15 7,97 840 937 27 7,99 817 941 39 7,96 832 925 
4 7,99 830 925 16 8 839 934 28 7,97 851 959 40 7,99 823 916 
5 7,98 846 969 17 8 855 943 29 7,98 855 970 41 7,98 826 957 
6 7,95 821 937 18 7,98 830 928 30 7,99 847 947 42 8 829 931 
7 7,98 826 928 19 8 833 934 31 7,98 822 921 43 7,98 815 910 
8 7,99 822 934 20 7,98 826 934 32 7,98 836 925 44 7,98 826 942 
9 7,96 841 956 21 7,98 836 942 33 7,97 830 945 45 8 823 932 

10 7,99 807 946 22 7,98 843 948 34 7,99 830 938     
11 7,97 831 942 23 7,98 840 937 35 7,98 845 945     
12 7,98 830 926 24 8 847 928 36 8 829 934     

 
First we compute the successive average values m1=x1, m2=(x1+x2)/2, …, mN=(x1+x2 
+…+xN)/N . Then we treat mi as a realization of the random variable and we find the mean, 
standard deviation and the coefficient of variation of successive samples (m1), (m1,m2), …, 
(m1,m2,…,mN). We repeat this procedure for the three random variables X : the diameter of the 
specimen, tensile strength and yield stress. The results are shown in Figure 2 as a plot of the 
coefficient of variation Vm against the number of samples. The difference between analytical 
and test results is also due to the fact that we don’t know the true coefficient of variation Vx. 
Instead we took a value σN/μN, computed from the sample mean and sample standard 
deviation of all the N values for a particular parameter in Table 1. 

 
Figure 2. Coefficient of variation Vm of the average value as a function of the number 

of samples. Comparison of analytical result with results from the tests. 
 
 
2 STATISTICAL DETERMINATION OF A SINGLE PROPERTY 
 
2.1 General principles 

This section gives expressions for deriving design values of the ultimate resistance or 
serviceability parameters of a structure or a component and for deriving the design values of 
material properties. 

It is assumed that all variables follow normal or lognormal distribution and that there 
is no prior knowledge about the value of the mean. Two cases are considered regarding the 
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knowledge of the standard deviation, namely “σX known” and “σX unknown” In EN 1990 [1] 
the assumptions of the knowledge of σX are replaced with assumption of knowledge of the 
coefficient of variation VX (see also remarks in the section 4.6 of the Appendix 1 of Handbook 
H1). In practice it is often preferable to use ”VX unknown” together with a conservative 
estimate for VX rather then the assumption ”VX known”. 

 
In Eurocode 1990 [1] the determination of characteristic value Xk or design value Xd of 

the parameter X in question (a material property, resistance or a model) is based on the 
prediction method of fractile estimation (see section 4.3, Appendix 1 to the Handbook H1 for 
more details). Similar results are obtained by using the coverage method of fractile estimation 
with the confidence level 0,75. In the following two examples this method is explained. 

 
Example 3. 

In a test we obtained values x1,x2,...,xn for the parameter X, which we assume to be 
distributed normally. Assuming that the standard deviation σx of the population is known, find 
the value k such that we will have the probability γ (confidence level) that the true mean μx of 
the parameter X will be greater then the sample mean mx, according to equation: 

 Xk = mx - k σx ≤ μx (6) 
In other words, we are solving the equation:  

  P (mx - k σx ≤ μx) = γ (7) 

As we have shown (equations (3) and (5)) the sample mean mx is a random variable 
with the mean μX and the standard deviation σX/√n. If we multiply the above inequality by -1, 
add a value mx and divide by σX/√n , we get  

  P ((mx - μx)√n /σx ≤ k√n = uγ) = γ (8) 

where the expression on the left side of the inequality is standardized normal variable and uγ 
is a fractile of the standardized normal distribution corresponding to the probability γ . The 
value k is therefore:  

  k = uγ  /√n (9) 

Example 4. 
We have the same situation as in the Example 3, but now the standard deviation σx is 

unknown. We are searching k such that we will have the probability γ that the true mean μx of 
the parameter X will be greater then the sample mean mx, according to equation:  

 Xk = mx – k sx ≤ μx (10) 
We make use of the following theorem: if all the terms are the same as in Example 3 

and sx is the sample standard deviation:  

  sx = Σ(xi - mx)2/(n-1) (11) 

then the random variable  

  (mx - μx)√n / sx (12) 

has a t-distribution with the degree of freedom n-1. 
Now we proceed exactly as in the Example 3 and obtain the value k:  

  k = tγ  /√n (13) 

with tγ being the fractile of the t-distribution of degree n-1 corresponding to the probability γ.  
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2.2 Assessment via the characteristic value 
When determining the design value Xd of the parameter X from the assessed 

characteristic value Xk , we use the following equation according to Eurocode 1990 [1]:  

  Xd = ηd Xk /γm  (14) 
where the characteristic value Xk is given by 

  Xk = mx(1 – kn Vx) (15) 

This equation is equal to equation (6) with the coefficient of variation Vx given by:  

  Vx= σx/mx  (16) 

The γm is the partial factor for the parameter X and it should be taken from the appropriate 
Eurocode EN 1992 to EN 1998. The ηd is the design value of the conversion factor. This 
factor covers the differences between the laboratory test conditions and conditions during the 
actual use. The value kn is obtained from the prediction method of fractile estimation and is:  

  kn = -up (1/n + 1)1/2 (17) 

When the coefficient of variation Vx is known, then up is taken as a fractile of the 
standardized normal distribution corresponding to probability p. For characteristic values of 
the single property the probability p=0,05 is used, so that up = -1.645. When the coefficient of 
variation Vx is unknown, then a fractile tp of the t-distribution with the degree of freedom n− 1 
corresponding to probability p is used instead of up. The factor kn is dependent on the number 
of samples n and is given in Table 2 for two cases, “Vx known” and “Vx unknown” and for 
probability p=0,05. 

 
Table 2. Values of kn for the 5% characteristic value. 

n 1 2 3 4 5 6 8 10 20 30 ∞ 
Vx  
known 

2,31 2,01 1,89 1,83 1,80 1,77 1,74 1,72 1,68 1,67 1,64 

Vx 
unknown 

- - 3,37 2,63 2,33 2,18 2,00 1,92 1,76 1,73 1,64 

 
The numbers in the Table are actually based on assumptions “σx known” and “σx 

unknown”. In EN 1990 [1] these assumptions are replaced with assumption of knowledge of 
the coefficient of variation VX. If the standard deviation σx is known then Vx should be 
computed from the equation (16). If σx or Vx is unknown, then Vx is calculated from the 
sample standard deviation sx (equation (11)) as  

 Vx = sx /mx  (18) 

The cases above assume that the variable X is distributed normally. What if X is 
distributed log-normally? 

When the parameter X is distributed log-normally, we use the transformation ln X=Y 
to obtain the variable Y which is distributed normally with N(μY,σY

2) (see also Appendix A to 
the handbook H1). The relationships between the mean and variance of both variables are  

  μY = ln(μx
2)/√(σx

2+μx
2) (19) 

  σY 
2= ln(1+σx

2/μx
2)=ln(1+Vx

2) (20) 

 



Chapter IV - Design assisted by testing 

IV - 7 

If the parameter X is distributed log-normally, then we proceed as follows. We 
transform all the test results according to the equation  

  yi = ln(xi) (21) 

and compute the sample mean mY from the values yi :  

 mY = Σ(yi)/n (22) 

Then, if the coefficient of variation Vx is known, we compute σY according to equation (20), 
VY from the equation (16), kn from Table 2 and then we calculate Yk from equation (15) using 
mY and VY instead of mx and Vx. If the coefficient of variation Vx is unknown, we compute the 
sample variance:  

 sY 2 = Σ(yi - mY )2/(n-1) (23) 
VY from the equation (18), kn from Table 2 and then we calculate Yk from equation (15) using 
mY and VY instead of mx and Vx. 

Finally we transform the computed characteristic value Yk = mY- k σY (or mY- k sY ) of 
the variable Y  to the characteristic value Xk of the original variable X:  

  Xk = exp(mY- k σY) (24) 
in case if Vx is known and  

  Xk = exp(mY- k sY) (25) 

in case if Vx is unknown. The design value Xd is then calculated using equation (14). 
 
Example 5. 

Take the test data from the example 2 and factors γm.=1,1 and ηd =0,8. Calculate the 
design value of the tensile strength via the 5% characteristic value for the first 5 test values. 
Assume both cases, Vx.=0,05 (known) and Vx.unknown. Assume also both types of 
distribution: normal and lognormal.  

 
We assume first the normal distribution of the tensile strength. The sample mean of 

the first n=5 test values is m =942 MPa and the sample standard deviation is s= 18.59 MPa. 
The coefficient of variation is Vx = 18.59/942=0,01973. For the case “Vx. known” we have 
from the Table 2 kn=1,80 and the design value is  

σm(d) = 0,8× 942×(1 – 1,80×0,05)/1,1=623,4 MPa.  
For the case “Vx. unknown” we have from the Table 2 kn=2,33 and the design value is  

σm(d) = 0,8× 942×(1 – 2,33×0,01973)/1,1=653,6 MPa.  
 
Next we assume that the tensile strength is distributed log-normally. We transform the values 
of tensile strength using equation (21) and calculate the sample mean mY=6,85 ln(MPa) and 
standard deviation sY= 0,01967 ln(MPa). For the case “Vx. known” we have  

VY = (ln(1+0,052))1/2/6,85=0,00729 and sY= 0,00729×6,85=0,04997 ln(MPa) 
from the Table 2 kn=1,80, the value  

Yk= 6,85-1,8×0,04997=6,76 ln(MPa) 
and the design value is  

σm(d) = 0,8× exp(6,76)/1,1= 627,4 MPa.  
For the case “Vx. unknown” we have from the Table 2 kn=2,33, the value  

Yk= 6,85-2,33×0,01967=6,80 ln(MPa) 
and the design value is  

σm(d) = 0,8× exp(6,80)/1,1=655,7 MPa.  
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We see that for both types of distribution the design value is greater for the case “Vx. 

unknown” then for the case “Vx. known”. The reason for this is that we have assumed much 
greater Vx.in the case “Vx. known” that it really is. If we had assumed Vx.=0,015, as obtained 
from all the test results, then we would get: 
 
Normal distribution, “Vx. known”: 

σm(d) = 0,8× 942×(1 – 1,80×0,015)/1,1=666,6 MPa.  
Log-normal distribution, “Vx. known”, sY = (ln(1+0,0152))1/2=0,015 

Yk= 6,85-1,8×0,015=6,82 ln(MPa) 
σm(d) = 0,8× exp(6,82)/1,1= 668,2 MPa.  

 
2.3  Direct assessment of the design value 

When determining the design value Xd directly, we should use the following formula:  

  Xd = ηd mx(1 – kd,n Vx)  (26) 

In case this method is used, the relevant limit states and the required level or reliability should 
be accounted for. The conversion factor ηd should cover all uncertainties not covered by the 
test. The factor kd,n is obtained from the prediction method of fractile estimation with the 
lower value of about 0,1 % (the probability p = 0,001). When the coefficient of variation Vx is 
known, then parameter X is assumed to be distributed normally and value kd,n is 

  kd,n = -up (1/n + 1)1/2 (27) 

with the 0,001 fractile of the standardized normal distribution up = -3,09 (the value –3,04 is 
used in Eurocode 1990 [1]). When the coefficient of variation Vx is unknown, then a fractile tp 
of the t-distribution with the degree of freedom n-1 corresponding to probability p=0,001 is 
used instead of up. The factor kd,n is dependent on the number of samples n and is given in 
Table 3: 

 
Table 3. Values of kd,n for the direct assessment of the design value. 

n 1 2 3 4 5 6 8 10 20 30 ∞ 
Vx  
known 

4,36 3,77 3,56 3,44 3,37 3,33 3,27 3,23 3,16 3,13 3,04 

Vx 
unknown 

- - - 11,40 7,85 6,36 5,07 4,51 3,64 3,44 3,04 

 
Example 6. 

With the data from the example 5 calculate the design value of tensile strength using 
the direct method. 

We assume first the normal distribution of the tensile strength. For the case “Vx. 
known” (Vx.=0,015), we have from the Table 3 kd,n=3,37 and the design value is  

σm(d) = 0,8× 942×(1 – 3,37×0,015)=715,5 MPa.  
For the case “Vx. unknown” we have from the Table 2 kn=7,85 and the design value is  

σm(d) = 0,8× 942×(1 – 7,85×0,01973)=636,9 MPa 
When log-normal distribution is assumed, for the case “Vx. known” (Vx.=0,015), we 

have  
Yk= 6,85-3,37×0,015=6,80 ln(MPa) 
σm(d) = 0,8× exp(6,80)= 717,9 MPa.  

And for the case “Vx. unknown”  
Yk= 6,85-7,85×0,01967= 6,70 ln(MPa) 
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σm(d) = 0,8× exp(6,70)=647,1 MPa.  
We obtained higher values with the direct method of calculation. This is because we 

used the same conversion factor ηd in both cases. 
 

2.4  Approximation of the factors kn and kd,n 
Factors kn and kd,n can be calculated by interpolation from the values in Tables 2 and 3 

or, alternatively, by approximation functions: 
kn = 1,655+0,672/n ,  p=0,05, Vx known   
kn = n/(-0,950+0,614×n) ,  p=0,05, Vx unknown 
kn = 3,099+1,294/n ,  p=0,001, Vx known 
kn = n/(-0,986+0,323×n) ,  p=0,001, Vx unknown 
Figure 3 shows how these formulas approximate the data from the Tables 2 and 3. The 

error when using these formulas is typically less then 1%. 

 
Figure 3. Approximation functions for the factors kn and kd,n . 
 
 

3 STATISTICAL DETERMINATION OF RESISTANCE MODELS 
 
The procedures given in this section are intended for the calibration of resistance 

models and for the derivation of design values from the tests undertaken to reduce 
uncertainties in parameters of the resistance model. 

Based on observations and theoretical considerations, a design model of the resistance 
is developed. The statistical interpretation of the test results should then be used to validate 
and adjust the model, until sufficient correlation between test and theoretical data is achieved. 
As in the previous section two methods are considered: (a) by assessing the characteristic 
value of resistance and (b) by directly assessing the design value of resistance. We start with 
the method (a).  

 
The following assumptions are made: the resistance function is a function of 

statistically independent variables X=(X1,..,Xj), which are either normally or log-normally 



Chapter IV - Design assisted by testing 

IV - 10 

distributed; a sufficient number of tests is carried out; all relevant material and geometrical 
data are measured.  

The first step is to develop a design model for the theoretical resistance rt  

  rt = grt(X)  (28) 
The model should include all relevant basic variables Xi that affect the resistance. We then 
compare the theoretical model with experimental results. Theoretical values rti are calculated 
by substituting actual measured properties of the sample i in the theoretical model. This is to 
be compared with measured resistance values rei . We plot the points (rti , rei) in a two-
dimensional diagram with rti on the abscissa and rti on the ordinate, as shown in Figure 4. If 
the theoretical model is accurate, all the points should lie on the diagonal of the first quadrant. 
Some scatter will always be present in realistic situations, but if any considerable deviation 
from that line occurs, further investigation of the experimental procedures and theoretical 
model should be done.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The diagram of the experimental to theoretical resistance. 
 
 

Next, represent the probabilistic model of the resistance as:  

  rp = b grt(X)δ  (29) 

where b is the slope of the least-squares best fit line, given by  

  b = Σ(re rt ) / Σ(rt 
2)  (30) 

δ is the error term, which represents the model uncertainty:  

  δ = re / rp  (31) 

In absence of other information it is assumed that δ>0 and that it is distributed log-normally. 
It means that Δ=ln(δ) is distributed normally. For each test value i we calculate  

  δi= rei / (brti) (32) 

and 

  Δi= ln(δi) (33) 

The estimated mean Δ  and variance sΔ for Δ are  

 Δ = Σ(Δi)/n (34) 

 sΔ
2 = Σ(Δi- Δ )2 / (n-1) (35) 

rt

re

re = b rt
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For the estimated value of the coefficient of variation a value  

 Vδ = 1)exp( 2 −Δs  (36) 

may be used (derived from the equation (20)).  
The coefficients of variation VXi of the basic variables should now be determined. 

These can be obtained from test data, if it can be shown that the tests are fully representative 
of the actual population. Since this is not generally the case, the coefficients of variation VXi 
will be established based on prior knowledge or assumptions.  

The coefficient of variation Vr of the resistance function is then computed as follows. 
If the resistance function is a product of the basic variables Xi  

 X = X1×X2×X3×…×Xj  (37) 

which are considered to be independent and distributed normally, then by taking logarithm of 
the above expression  

 ln(X) = ln(X1) + ln(X2) + ln(X3) +…+ ln(Xj ) (38) 

we have a sum of log-normally distributed variables. The variance of the sum of independent 
variables is (see equation (2))  

 σln(X)
2 = Σ σln(Xi)

2=Σ (ln(1+VXi
2))  (39) 

where we used the equation (20). Taking the anti-logarithm, we have  

 1+Vrt
2=exp(σln(X)

2)=(1+ VX1
2)(1+ VX2

2)...(1+ VXj
2)  (40) 

When VXi are small, the above equation can be simplified to  

 Vrt
2 = Σ(VXi

2)  (41) 
If the resistance function is more complex function, so that it cannot be expressed as a product 
of basic variables, then Vrt is computed from the equation  

 Vrt
2 = D[grt(X)]/grt

2(Xm) =
)(

1
2

mrt Xg
Σ (

i

rt

X
g

∂
∂ σi )2 (42) 

where Xm are the mean values of the basic variables.  
The coefficient of the variation Vr of the resistance function is then computed as 

 Vr
2 = (1+Vδ 

2)(1+Vrt
2) -1  (43) 

the standard deviations  

 Qrt
 = σln(X) = √ln(1+Vrt

2)  (44) 

 Qδ
 = σln(δ) = √ln(1+Vδ

2)  (45) 

 Q = σln(r) = √ln(1+Vr
2)  (46) 

and the weighting factors  

 αrt
 = Qrt/Q  (47) 

 αδ
 = Qδ /Q  (48) 

The mean value of the resistance function is obtained from the theoretical model using 
the mean values Xm of the basic variables:  

 rm
 = b grt(Xm)  (49) 



Chapter IV - Design assisted by testing 

IV - 12 

The characteristic resistance rk is finally obtained from the equation (the derivation of this 
equation is given in the appendix A):  

 rk
 = rm exp(-k∞ αrt

 Qrt- kn αδ
 Qδ -0,5 Q2)   (50) 

The factor kn is taken from the Table 2 for the case "Vx unknown" and k∞ is the value 
of kn for large n (k∞ =1,64). When only one variable is present in the resistance model, only 
the term - kn αδ

 Qδ from the equation (50) is taken into account.  
 
When the design value of the resistance is assessed directly, rather that from the 

characteristic value of resistance, then the procedure is the same with the only modification 
that the values k∞ and kn are replaced with the values k∞,d and kd,n, taken from the Table 3 for 
the case " Vx unknown".  
 
Example 7. 

Consider the resistance model in the form F=A×σm /1000. As the basic variables we 
take the section of a rod A and the tensile strength σm . Let the mean and coefficient of 
variation of the basic variables be E(A)=269,76 mm2, V(A)=0,00295, E(σm)=936.5 MPa, 
V(σm)=0,01509. The theoretical Ft and experimental Fe data for various values of the basic 
variables are given in the Table 4. Compute the characteristic value of the resistance at the 
mean values of basic variables. 

 
Table 4. Theoretical Ft and experimental Fe data of the resistance in [kN]. 

n Ft Fe n Ft Fe n Ft Fe 
1 214,9 215,9 7 243,6 245,2 13 269,3 270,8 
2 219,9 222,4 8 248,1 253,2 14 273,4 274,2 
3 224,9 224,7 9 252,5 261,3 15 277,4 279,6 
4 229,7 228,5 10 256,8 260,1 16 281,3 281,7 
5 234,4 228 11 261 256,5 17 285,2 282,9 
6 239,1 239,7 12 265,2 261,7 18 289 278,7 

 
The diagram in Figure 5 shows the data from the Table 4 with the regression line 

Ft=b×Fe. The value b is obtained from equation (30): b=0.9995. 

Figure 5. Experimental Fe vs. theoretical Ft resistance. 
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The mean and sample standard deviation of the logarithm of the error term δ are given 
by Δ =0,000567, sΔ

2=0,000277 , the coefficients of variation are calculated from equations 
(36), (40) and (43) and are Vδ 

2=0,000277, Vrt 
2 =0,000236, Vr 

2 = 0,000513. The factor 
kn=1.78054, is obtained using the approximation formula. The theoretical value of the 
resistance function at the mean values of basic variables is rm=252,5 kN. Finally, the 
characteristic value of the resistance is computed: 

 
rk=252,5×exp(-1,64×0,6785×0,01537-1,7805×0,7346×0,0166 -0,5×0.02262)=242.8 kN 

 
We have repeated the above procedure for 10 values of V(A) and V(σm) equally spaced 

in the range from 0 to 0,4. The Figure 6 shows the dependence of the characteristic value of 
the resistance on both coefficients of variation. 

 
Figure 6. The characteristic value of the resistance for various coefficients of variation 

of the basic variables A and σm .  
 
 
If the design value is calculated directly, then k∞,d =3,04 and kn,d = 3,7223 by the 

approximation formula, and the design value is 
 
rd=252,5×exp(-3,04×0,6785×0,01537-3,7223×0,7346×0,0166 -0,5×0.02262)=233,7 kN 
 
The partial factor γm for the model resistance in this case is:  

 γm
 = rm. /rd = 242,8/233,7 = 1,039  (51) 

 
Two software products for the calculation of the characteristic resistance, design 

resistance and partial factors are given in the attachments. These products include the 
following. 
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1. The attached Excel workbook dast.xls can be used to calculate the values rk, rd, and 
γm for different theoretical and experimental data. The user fills in the yellow input fields with 
the theoretical and experimental values of the resistance, the mean and the coefficient of 
variation of the basic variables and the mean value of resistance. The worksheet automatically 
calculates the characteristic and design values of resistance and the partial factor (shown in 
blue fields) and draws the data in a chart. 

  
2. The computer program dast.exe can be used to produce tables of values of these 

quantities using different values of the indexes of variation of the basic variables. The source 
file dast.c to this computer program is also attached and can be used to produce the dast.exe 
if compiled with a C or C++ compiler.  

The program dast.exe works in command mode only, i.e. the user must enter the 
command mode (MSDos or Command Prompt in the Windows system) to use this program. 
The program reads input data from an input file provided by the user (the program and input 
files must be at the same, working directory). The format of this input file is as follows. In the 
first line the word ‘resistance’ is entered. The following lines contain the values of theoretical 
and experimental values of resistance, two numbers per line. Then a word ‘variations’ is 
entered, followed by the values of the coefficients of variation VX for each basic variable, one 
number per line. If the user requires the values rk , rd and γm only for the input values of VX, 
then the word ‘end’ completes the input file. If the user requires the values rk , rd or γm for a 
range of the coefficients of variations VX , then a word ‘calculate’ is entered followed by the 
line containing one of the words ‘characteristic’, ‘design’ or ‘partial’, respectfully. Next the 
word ‘table’ is entered followed with the line containing eight numbers. These numbers 
indicate the indices of two (arbitrarily chosen) basic variables, the minimum and maximum 
value of the coefficient of variation for the first basic variable, the minimum and maximum 
value of the coefficient of variation for the second basic variable, and the number of tabulated 
values for the first and the second basic variable. The word ‘end’ completes the input. 
Comment lines starting with ‘;’ are ignored. The input format is also indicated in more detail 
in the source file dast.c.  

An example of the use is provided with two input files, dast.i1 and dast.i2, which 
contain data from the example 7. The output files dast.o1 and dast.o2 that were produced by 
the command-mode commands ‘dast dast.i1 > dast.o1’ and ‘dast dast.i2 > dast.o2’ are also 
attached. As shown in the attachment, the second file dast.o2 can be directly used in Excel to 
produce three dimensional chart of the calculated quantity in dependence of the indexes of 
variation of two (arbitrarily chosen) basic variables. 
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APPENDIX A. The derivation of the equation (50) 
 
 
Let X be lognormaly distributed. Then the distribution ln(X) is normal with mean 

μlnX=μ(lnX) and standard deviation σlnX. The characteristic value of ln(X) can be written: 

 ln(X)k
 = μlnX – kn σlnX  (A.1) 

or 

 Xk
 = exp(μlnX – kn σlnX)  (A.2) 

Since the mean μ(X) of X can be expressed with the mean μlnX and standard deviation σlnX of 
ln(X) by the relationship:  

 μ(X)=exp(μlnX+σlnX
2/2)  (A.3) 

from there we have: 

 Xk=μ(X) exp(- knσlnX - σlnX
2/2)  (A.4) 

If X=Y Z is a product of two influences, Y and Z, then  

 ln(X) = ln(Y) + ln(Z)  (A.5) 

and the mean of ln(X) is:  

 μlnX = μ(ln(Y))+μ(ln(Z))  (A.6) 

The standard deviation σlnX of ln(X) can be expressed using FORM factors αY and αZ as: 

 σlnX = αY σlnY + αZ σlnZ  (A.7) 
If we now combine equations (A.7) and (A.4), then the characteristic value of X as a 
combination of Y and Z is:  

 Xk=μ(X) exp(-kn αY σlnY –kn αZ σlnZ – σlnX
2/2)  (A.8) 

If we consider the resistance function r as a variable X, the theoretical resistance function rt as 
variable Y and error term δ as variable Z in the above equation, we rewrite the equation (A.8) 
with the notation from section 3: 

 rk= rm exp(-kn αrt Qrt –kn αδ Qδ – Q2/2)  (A.9) 

Finally, since we assume that there is no statistical uncertainty for theoretical resistance 
function rt with respect to the number of samples n, we can substitute k∞ for kn and we obtain 
the equation (50). 
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ATTACHMENTS 

 
1. EXCEL worksheet from the workbook “dast.xls” 
2. Source file “dast.c” to the program “dast.exe” 
3. Input file “dast.i1” for the program “dast.exe” 
4. Output file “dast.o1” produced by “dast.exe” from “dast.o1” 
5. Input file “dast.i2” for the program “dast.exe” 
6. Output file “dast.o2” produced by “dast.exe” from “dast.o2” 
7. EXCEL chart showing the data from dast.o2 
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Attachment 1 -  EXCEL worksheet from the workbook “dast.xls”  
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Attachment 2 - Source file “dast.c” to the program “dast.exe” 
 

/*----------------------------------------------------------------------------- 
 Model resistance calculations according to EN 1990, Anex D, 8.2.2 and 8.2.3. 
-----------------------------------------------------------------------------*/ 
#define N_n 100 
#define N_j 10 
#include <stdio.h> 
#include <math.h> 
 
double Rtheor[N_n], Rexper[N_n], Vx[N_j], Va1, Va2, Vb1, Vb2; 
int n, nj, na, nb, Xa, Xb, table, calc; 
enum { characteristic, design, partial }; 
char *scalc[]={"characteristic","design","partial"}; 
 
/*----------------------------------------------------------------------------- 
 Model resistance calculations according to EN 1990, Anex D, 8.2.2 and 8.2.3. 
 Calculates rk/rm, rd/rm or rk/rd (depending on variable 'calc') 
 using D.17a and D.21 in EN 1990, Anex D. 
 
 If table data Xa, Xb, ... are given (see read_data() below), computes a table 
 of na*nb values, where the index of variation for the variable Xa is changing 
 from Va1 to Va2 and the index of variation for the variable Xb is changing 
 from Vb1 to Vb2. 
-----------------------------------------------------------------------------*/ 
main(argc,argv) int argc; char **argv; { int i,j; extern double Rmodel(); 
 
 if ( !argv[1] ) printf("USAGE: dast inputfile\n"), exit(1); 
 
 read_data(argv[1]); 
 
 if ( table ) { 
 printf("%s values for Vx%d=[%g,%g] (|) and Vx%d=[%g,%g] (-->)\n\n", 
 scalc[calc],Xa,Va1,Va2,Xb,Vb1,Vb2); 
 printf("%7s ",""); 
 for ( j=0; j<nb; j++ ) 
 printf("%7.4g ",Vb1+(Vb2-Vb1)/(nb-1)*j); 
 for ( i=0; i<na; i++ ) { 
 printf("\n%7.4g ",Vx[Xa-1]=Va1+(Va2-Va1)/(na-1)*i); 
 for ( j=0; j<nb; j++ ) { 
 Vx[Xb-1]=Vb1+(Vb2-Vb1)/(nb-1)*j; 
 printf("%7.4g ",Rmodel(n,Rtheor,Rexper,nj,Vx,1,calc)); 
 } 
 } 
 } 
 else Rmodel(n,Rtheor,Rexper,nj,Vx,0,calc); 
} 
 
/*----------------------------------------------------------------------------- 
 Reads numerical input data: 
 
 Rtheor[]:  theoretical values of resistance model 
 Rexper[]:  experimental values of resistance model 
 Vx[]:      indexes od variation of basic variables 
 Xa, Xb:    indexes of the first and second basic variable to be tabulated 
 Va1, Va2:  the range of the index of variation for the first basic variable 
 Vb1, Vb2:  the range of the index of variation for the second basic variable 
 na, na:    number of tabulated values for the firs and second basic variable 
 
 Data are input through a file in the following format: 
 
 ;comment: the line starting with ';' (or a blank line) is ignored. 
 resistance 
 Rtheor[1] Rexeper[1] 
 Rtheor[2] Rexeper[2] 
 ... 
 Rtheor[n] Rexeper[n] 
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 variations 
 Vx[1] 
 Vx[2] 
 ... 
 Vx[j] 
 
 table 
 Xa Xb Va1 Va2 Vb1 Vb2 na nb 
 calc 
 characteristic OR design OR partial 
 end 
-----------------------------------------------------------------------------*/ 
read_data(s) char *s; { FILE *fd; char buf[501]; 
 
 if ( (fd=fopen(s,"r"))==0 ) printf("can't open %s!",s), exit(1); 
 
 for ( ; fgets(buf,500,fd); ) { 
 LINE: 
 
 if ( buf[0]==';' || buf[0]=='\n' ) continue; 
 
 else if ( !strncmp("resistance",buf,10) ) { 
 for ( ; fgets(buf,500,fd); ) { 
 if ( n>=N_n ) printf("too many points!"), exit(1); 
 if ( sscanf(buf,"%lg %lg",Rtheor+n,Rexper+n)!=2 ) goto LINE; 
 n++; 
 } 
 } 
 else if ( !strncmp("variations",buf,10) ) { 
 for ( ; fgets(buf,500,fd); ) { 
 if ( nj>=N_j ) printf("too many variables!"), exit(1); 
 if ( sscanf(buf,"%lg",Vx+nj)!=1 ) goto LINE; 
 nj++; 
 } 
 } 
 else if ( !strncmp("table",buf,5) ) { 
 fgets(buf,500,fd); 
 if ( sscanf(buf,"%d %d %lg %lg %lg %lg %d %d", 
 &Xa,&Xb,&Va1,&Va2,&Vb1,&Vb2,&na,&nb)!=8 ) 
 printf("error in 'table'!"), exit(1); 
 table=1; 
 } 
 else if ( !strncmp("calculate",buf,9) ) { 
 fgets(buf,500,fd); 
 if      ( !strncmp("design",buf,6) ) calc=design; 
 else if ( !strncmp("partial",buf,7) ) calc=partial; 
 else if ( !strncmp("characteristic",buf,14) ) calc=characteristic; 
 else goto ERROR; 
 } 
 else if ( !strncmp("end",buf,3) ) break; 
 else ERROR: printf("error in file: '%s'",buf), exit(1); 
 } 
 fclose(fd); 
 
 if ( n<=0 || nj<=0 || nj>n ) printf("error in n/nj!"), exit(1); 
 if ( table && (Xa<=0 || Xb<=0 || Xa>nj || Xb>nj) ) 
 printf("error in table!"), exit(1); 
} 
 
/*----------------------------------------------------------------------------- 
 Computes the factor of a value of model resistance according to EN 1990, 
 Anex D, 8.2.2 and 8.2.3. Depending on the value of calc (characteristic, 
 design, partial) returns the exponent from equation D.17a, D.21 and the ratio 
 of the two, respectfully. 
 
 If table!=0 prints intermediate and final calculatuions. 
-----------------------------------------------------------------------------*/ 
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double Rmodel(n,Rtheor,Rexper,j,Vx,table,calc) 
int n,j,table; double Rtheor[],Rexper[],Vx[]; { 
 
 double rt,ret,b,m,s2,t,Vd2,Vrt2,Vr2,Qrt,Qd,Q,art,ad,kn,knd,fd,fk,gm; int i; 
 extern double VX2(); 
 
 for ( rt=ret=i=0; i<n; i++ ) { 
 rt+=  Rtheor[i]*Rtheor[i]; 
 ret+= Rtheor[i]*Rexper[i]; 
 } 
 b=ret/rt; 
 for ( s2=m=i=0; i<n; i++ ) { 
 m+= (t=log(Rexper[i]/(b*Rtheor[i]))); 
 s2+= t*t; 
 } 
 m/=n; 
 s2= n>1? (s2-m*m*n)/(n-1):0.0; 
 Vd2=exp(s2)-1; 
 Vrt2=VX2(nj,Vx); 
 Vr2=(1+Vd2)*(1+Vrt2)-1; 
 Qrt=sqrt(log(1+Vrt2)); 
 Qd=sqrt(log(1+Vd2)); 
 Q=sqrt(log(1+Vr2)); 
 art=Qrt/Q; 
 ad=Qd/Q; 
 kn=n/(-0.95045+0.61443*n); 
 knd=n/(-0.98623+0.32344*n); 
 fk=exp(-1.64*art*Qrt-kn*ad*Qd-0.5*Q*Q); 
 fd=exp(-3.04*art*Qrt-knd*ad*Qd-0.5*Q*Q); 
 gm=fk/fd; 
 if ( !table ) { 
 printf("rt=%g\n",rt); 
 printf("ret=%g\n",ret); 
 printf("b=%g\n",b); 
 printf("m=%g\n",m); 
 printf("s=%g\n",sqrt(s2)); 
 printf("Vd=%g\n",sqrt(Vd2)); 
 printf("Vrt=%g\n",sqrt(Vrt2)); 
 printf("Vr=%g\n",sqrt(Vr2)); 
 printf("Qrt=%g\n",Qrt); 
 printf("Qd=%g\n",Qd); 
 printf("Q=%g\n",Q); 
 printf("art=%g\n",art); 
 printf("ad=%g\n",ad); 
 printf("kn=%g\n",kn); 
 printf("knd=%g\n",knd); 
 printf("fk=%g\n",fk); 
 printf("fd=%g\n",fd); 
 printf("gm=%g\n",gm); 
 } 
 return calc==partial? gm : (calc==design? fd :fk); 
} 
 
/*----------------------------------------------------------------------------- 
 Computes Vx^2 as a product of (1+Vxi^2)-1. 
-----------------------------------------------------------------------------*/ 
double VX2(j,Vx) int j; double Vx[]; { double s; int i; 
 
 for ( s=1, i=0; i<j; i++ ) s*= (Vx[i]*Vx[i]+1); 
 
 return s-1; 
} 
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Attachment 3 - Input file “dast.i1” for the program “dast.exe” 
 
 

;Example 7, calculation with fixed indexes of variation 
resistance 
 214.9    215.9 
 219.9    222.4 
 224.9    224.7 
 229.7    228.5 
 234.4      228 
 239.1    239.7 
 243.6    245.2 
 248.1    253.2 
 252.5  261.3 
 256.8    260.1 
 261    256.5 
 265.2    261.7 
 269.3    270.8 
 273.4    274.2 
 277.4    279.6 
 281.3    281.7 
 285.2    282.9 
 289    278.7 
variations 
0.00295 
0.01509 
end 
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Attachment 4 - Output file “dast.o1” produced by “dast.exe  dast.i1  >dast.o1” 
 
 

rt=1167250 
ret=1166670 
b=0.999505 
m=0.000567298 
s=0.0166434 
Vd=0.0166445 
Vrt=0.0153757 
Vr=0.022661 
Qrt=0.0153748 
Qd=0.0166434 
Q=0.022658 
art=0.678558 
ad=0.734547 
kn=1.78054 
knd=3.72232 
fk=0.961622 
fd=0.925447 
gm=1.03909 
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Attachment 5 - Input file “dast.i2” for the program “dast.exe” 
 
 
;Example 7, calculation of the partial factor (gm) in a table 
resistance 
 214.9    215.9 
 219.9    222.4 
 224.9    224.7 
 229.7    228.5 
 234.4      228 
 239.1    239.7 
 243.6    245.2 
 248.1    253.2 
 252.5    261.3 
 256.8    260.1 
 261    256.5 
 265.2    261.7 
 269.3    270.8 
 273.4    274.2 
 277.4    279.6 
 281.3    281.7 
 285.2    282.9 
 289    278.7 
variations 
0.00295 
0.01509 
calculate 
partial 
table 
1 2 0 0.5 0 0.5 11 11 
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Attachment 6 - Output file “dast.o2” produced by “dast.exe dast.i2  >dast.o2” 

 
 

partial values for Vx1=[0,0.5] (|) and Vx2=[0,0.5] (-->) 
 
 0    0.05     0.1    0.15     0.2 0.25     0.3    0.35     0.4    0.45     0.5  
 0   1.033    1.08   1.154   1.235   1.322   1.414    1.51   1.611   1.716   1.826   1.939  
0.05    1.08   1.109   1.173   1.249   1.333   1.423   1.519   1.619   1.724   1.833   1.946  
 0.1   1.154   1.173   1.221   1.288   1.366   1.452   1.545   1.644   1.747   1.855   1.967  
0.15   1.235   1.249   1.288   1.346   1.417   1.498   1.587   1.683   1.785   1.891   2.002  
 0.2   1.322   1.333   1.366   1.417   1.482   1.558   1.643   1.736   1.835    1.94   2.05  
0.25   1.414   1.423   1.452   1.498   1.558    1.63   1.711   1.801   1.898   2.001   2.109  
 0.3    1.51   1.519   1.545   1.587   1.643   1.711    1.79   1.877   1.972   2.073    2.18  
0.35   1.611   1.619   1.644   1.683   1.736   1.801   1.877 1.962   2.054   2.154    2.26  
 0.4   1.716   1.724   1.747   1.785   1.835   1.898   1.972   2.054   2.146   2.244   2.349  
0.45   1.826   1.833   1.855   1.891    1.94   2.001   2.073   2.154   2.244   2.341   2.446  
 0.5   1.939   1.946   1.967   2.002    2.05   2.109    2.18    2.26   2.349   2.446   2.549  

 
 
7. Excel chart from the above data 
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Summary 

 
The approach to assessment of an existing structure is in many aspects different from 

that taken in designing the structure of a newly proposed building. The effects of the 
construction process and subsequent life of the structure, during which it may have undergone 
alteration, deterioration, misuse, and other changes to its as-built (as-designed) state, must be 
taken into account. To assess existing structures general principles and rules of the Eurocode 
EN 1990 Basis of structural design must be supplemented by specific procedures provided by 
International Standards ISO. 

 
 

1 INTRODUCTION 
 

1.1 Background documents 
Background documents related to assessment of existing structures are limited to few 

national codes and three International Standards ISO 2394 [1], ISO 13822 [2] and ISO 12491 
[3]. General principles and rules of the Eurocode EN 1990 Basis of structural design [4] must 
be supplemented by specific procedures provided in the above mentioned International 
Standards ISO [1,2,3] that are primarily used in this contribution. Additional information 
concerning assessment of existing structures may be found in scientific papers and 
publications, for example in the publications [5], [6] and [7].  

 
1.2 General principles 

Assessment of existing structures is becoming a more and more important and 
frequent engineering task. Continued use of existing structures is of a great significance due to 
environmental, economic and socio-political assets, growing larger every year. These aspects 
are particularly relevant to buildings that always constitute a great social and economic value. 

General principles of sustainable development regularly lead to the need for extension 
of the life of a structure, in majority of practical cases in conjunction with severe economic 
constraints. That is why assessment of existing structures often requires application of 
sophisticated methods, as a rule beyond the scope of traditional design codes. 

The approach to assessment of an existing structure is in many aspects different from 
that taken in designing the structure of a newly proposed building. The effects of the 
construction process and subsequent life of the structure, during which it may have undergone 
alteration, deterioration, misuse, and other changes to its as-built (as-designed) state, must be 
taken into account. However, even though the existing building may be investigated several 
times, some uncertainty in behaviour of the basic variables shall always remain. Therefore, 
similarly as in design of new structures, actual variation in the basic variables describing 
actions, material properties, geometric data and model uncertainties are taken into account by 
partial factors or other code provisions. 
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2 GENERAL FRAMEWORK OF ASSESSMENT 
 

2.1 Reasons for assessment 
In general, an existing structure may be subjected to the assessment of its actual 

reliability in case of: 
- rehabilitation of an existing constructed facility during which new structural members 
are added to the existing load-carrying system; 
- adequacy checking in order to establish whether the existing structure can resist loads 
associated with the anticipated change in use of the facility, operational changes or 
extension of its design working life; 
- repair of an existing structure, which has deteriorated due to time dependent 
environmental effects or which has suffered damage from accidental actions, for 
example, earthquake; 
- doubts concerning actual reliability of the structure. 

In some circumstances assessments may also be required by authorities, insurance 
companies or owners or may be demanded by a maintenance plan. 
 
2.2 Common rules 

Two common rules are usually accepted when assessing existing structures: 
- Currently valid codes for verification of structural reliability should be considered, 
historic codes valid in the period when the structure was designed should be used as 
guidance documents only. 
- Actual characteristics of structural materials, actions, geometric data and structural 
behaviour should be considered, the original design documentation including drawings 
should be used as guidance documents only.   
The first rule should be applied in order to achieve similar reliability level as in case of 

newly designed structures. The second principle should avoid negligence of any structural 
condition that may affect actual reliability (in favourable or unfavourable way) of a given 
structure.  

Most of the current codes are developed assuming the concept of limit states in 
conjunction with the partial factor method. In accordance with this method, which is mostly 
considered here, basic variables are specified by characteristic or representative values. The 
design values of the basic variables are determined on the basis of the characteristic 
(representative) values and appropriate partial factors. 

It follows from the second principle that a visual inspection of the assessed structure 
should be made whenever possible. Practical experience shows that inspection of the site is 
also useful to obtain a good feel for actual situation and state of the structure. 

As a rule the assessment need not to be performed for those parts of the existing 
structure that will not be affected by structural changes, rehabilitation, repair, change in use or 
which are not obviously damaged or are not suspected of having insufficient reliability. 

 
2.3 General procedure 

In general, the assessment procedure consists of the following steps (see the flow chart 
in Annex A to this Chapter): 

- specification of the assessment objectives required by the client or authority; 
- scenarios related to structural conditions and actions; 
- preliminary assessment: 
- study of available documentation; 
- preliminary inspection; 
- preliminary checks; 
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- decision on immediate actions; 
- recommendation for detailed assessment;  
- detailed assessment: 
- detailed documentary search; 
- detailed inspection; 
- material testing and determination of actions; 
- determination of structural properties; 
- structural analysis; 
- verification of structural reliability;  
- report including proposal for construction intervention;  
- repeat the sequence if necessary. 

When the preliminary assessment indicates that the structure is reliable for its intended 
use over the remaining life a detailed assessment may not be required. Conversely if the 
structure seems to be in dangerous or uncertain condition immediate interventions and 
detailed assessment may be necessary. 

 
 

3 INVESTIGATION 
 

3.1 Purpose 
Investigation of an existing structure is intended to verify and update the knowledge 

about the present condition (state) of a structure with respect to a number of aspects. Often, 
the first impression of the structural condition will be based on visual qualitative 
investigation. The description of possible damage of the structure may be presented in verbal 
terms like: 'unknown, none, minor, moderate, severe, destructive'. Very often the decision 
based on such an observation will be made by experts in purely intuitive way. 

A better judgement of the structural condition can be made on the basis of 
(subsequent) quantitative inspections. Typically, assessment of existing structures is a cyclic 
process when the first inspection is supplemented by subsequent investigations. The purpose 
of the subsequent investigations is to obtain a better feel for the actual structural condition 
(particularly in the case of damage) and to verify information required for determination of 
the characteristic and representative values of all basic variables. For all inspection 
techniques, information on the probability of detecting damages if present, and the accuracy 
of the results should be given. 

 
3.2 Statement 

Results of an investigation should be included in the statement that usually contains 
the data describing 

-  actual state of the structure; 
-  types of structural materials and soils; 
-  observed damages; 
-  actions including environmental effects; 
-  available design documentation. 
A proof loading is a special type of investigation. Based on such tests one may draw 

conclusions with respect to: 
- the bearing capacity of the tested member under the test load condition; 
- other members;  
- other load conditions; 
- the behaviour of the system. 
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The inference in the first case is relatively easy; the probability density function of the 
load bearing capacity is simply cut off at the value of the proof load. The inference from the 
other conclusions is more complex. Note that the number of proof load tests needs not to be 
restricted to one. Proof testing may concern one element under various loading conditions 
and/or a sample of structural elements. In order to avoid an unnecessary damage to the 
structure due to the proof load, it is recommended to increase the load gradually and to 
measure the deformations. Measurements may also give a better insight into the behaviour of 
the system. In general proof loads can hardly address long-term or time-dependent effects. 
These effects should be compensated by calculation. 

 
 

4 BASIC VARIABLES 
 

4.1  General 
In accordance with the above-mentioned general principles and rules, characteristic 

and representative values of all basic variables shall be determined taking into account the 
actual situation and state of the structure. Available design documentation is used as a 
guidance material only. Actual state of the structure should be verified by its inspection to an 
adequate extent. If appropriate, destructive or non-destructive inspections should be 
performed and evaluated using statistical methods.  

 
4.2 Characteristic values 

For verification of the structural reliability using partial factor method, the 
characteristic and representative values of basic variables shall be considered as follows: 

(a) Dimensions of the structural elements shall be determined on the basis of 
adequate measurements. However, when the original design documentation is 
available and no changes in dimensions have taken place, the nominal dimensions 
given in the documentation may be used in the analysis. 

(b) Load characteristics shall be introduced with the values corresponding with the 
actual situation verified by destructive or non-destructive inspections. When some 
loads have been reduced or removed completely, the representative values can be 
reduced or appropriate partial factors can be adjusted. When overloading has been 
observed in the past it may be appropriate to increase adequately representative 
values. 

(c) Material properties shall be considered according to the actual state of the 
structure verified by destructive or non-destructive inspections. When the original 
design documentation is available and no serious deterioration, design errors or 
construction errors are suspected, the characteristic values given in original design 
may be used.  

(d) Model uncertainties shall be considered in the same way as in design stage unless 
previous structural behaviour (especially damage) indicates otherwise. In some 
cases model factors, coefficients and other design assumptions may be established 
from measurements on the existing structure (e.g. wind pressure coefficient, 
effective width values, etc.). 

Thus reliability verification of an existing structure should be backed up by inspection 
of the structure including collection of appropriate data. Evaluation of prior information and 
its updating using newly obtained measurements is one of the most important steps of the 
assessment. 
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5 EVALUATION OF INSPECTION RESULTS 
 
5.1 Updating in general 

Using results of an investigation (qualitative inspection, calculations, quantitative 
inspection, proof loading) the properties and reliability estimates of the structure may be 
updated. Two different procedures can be distinguished: 

(1)  Updating of the structural failure probability. 
(2) Updating of the probability distributions of basic variables. 

Direct updating of the structural reliability (procedure (1)) can be formally carried out 
using the following basic formula of probability theory: 
 

 P(F|I) = 
)(P

)(P
I

IF ∩  (1) 

where P denotes probability, F local or global failure, I inspection information, and ∩ 
intersection of two events. The inspection information I may consist of the observation that 
the crack width at the beam B is smaller than at the beam A. An example of probability 
updating using equation (1) is presented in Annex B to this Chapter.  
 
5.2 Updating of probability distribution 

The updating procedure of a univariate or multivariate probability distribution 
(procedure (2)) is given formally as: 
 
 fX(x|I) = C P(I|x) fX(x) (2) 

where fX(x|I) denotes the updated probability density function of X, fX(x) denotes the 
probability density function of X before updating, X a basic variable or statistical parameter, I 
inspection information, C normalising constant, and P(I|x) likelihood function. An illustration 
of equation (2) is presented in Figure 1.  

fX(x), fX(x|I)

X

prior distribution fX(x)

updated distribution fX(x|I)

updated xdprior xd  

Figure 1. Updating of probability density function for an expected variable X. 
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In the example shown in Figure 1 updating leads to a more favourable distribution 
with a greater design value xd than the prior design value xd. In general, however, the updated 
distribution might be also less favourable than the prior distribution. 
 
5.3 Updating of failure probability 

Once the updated distributions for the basic variables fX(x) have been found, the 
updated failure probability P(F|I) (procedure (1)) may be determined by performing a 
probabilistic analysis using common method of structural reliability for new structures. 
Symbolically it can be written  

 
 P(F|I) = ∫

<0)g(

d)|(
x

X xIxf  (3) 

 
where fX(x|I) denotes the updated probability density function and g(x) < 0 denotes the failure 
domain (g(x) being the limit state function). It should be proved that the probability P(F|I), 
given the design values for its basic variables, does not exceed a specified target value. 

 
5.4 Updating of characteristic and design values 

The updating procedure (2) can be used to derive updated characteristic and 
representative values (fractiles of appropriate distributions) of basic variables to be used in the 
partial factor method. The Bayesian method for fractile updating is described in Annex C to 
this Chapter. More information on updating may be found in ISO 12491 [3]. 

A more practical procedure is to determine directly updated design values for each 
basic variable. For a resistance parameter X, the design value can be obtained using 
operational formula of ISO 2394 [1]. For normal and lognormal random variable it holds 
 
 ( )Vx αβμ −= 1d  (4) 

 ( )2
d 5,0exp σσαβμ −−=x  (5) 

 
where xd is the updated design value for X, μ updated mean value, α probabilistic influence 
coefficient, β target reliability index, V updated coefficient of variation, and σ2 = ln(1+V2). 

The value of the target reliability index β is discussed in ISO/CD 13822 [2], the values 
of α can be taken equal to those commonly used for new structures (0,7 for the dominating 
load parameter, 0,8 for the dominating resistance parameter and 0,3 for non-dominating 
variables according to ISO 2394 [1]). 

Alternatively one might determine the characteristic value xk first and then calculate 
the design value xd by applying the appropriate partial factor γm: 

 

 xd = xk /γm (6) 
 
For normal and lognormal random variable X the characteristic value xk then follows as  
 
 ( )kVx −= 1k μ  (7) 
 ( )2

k 5,0exp σσμ −−= kx  (8) 
 
where k = 1,64 (5% fractile of the standardised normal distribution) is usually used. It may be 
helpful to consider both methods and to use the most conservative result. 
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This procedure may be applied for all basic variables. However, for geomechanical properties 
and variable loads other distributions apart from the normal and lognormal distribution may 
be more suitable. 
 Note that a lower acceptable reliability level can be specified by reducing β - values 
for probabilistic design and reducing γ - values in the partial factor method. For a material 
property X described by a normal distribution the partial factor γm may be estimated using 
equation 
 

 γm = 
αβσμ

σμ
−
−

=
k

x
x

d

k  (9) 

 
which follows from general relationship (6). All the symbols used in (9) are defined above (k 
= 1,64 is usually used for the characteristic strength). Similar relationships between γm and β 
may be derived for lognormal or other distributions.  

 
 

6 STRUCTURAL ANALYSIS 
 
Structural behaviour should be analysed using models that describe actual situation 

and state of an existing structure. Generally the structure should be analysed for ultimate limit 
states and serviceability limit states using basic variables and taking into account relevant 
deterioration processes.  

All basic variables describing actions, material properties, load and model 
uncertainties should be considered as mentioned above. The uncertainty associated with the 
validity and accuracy of the models should be considered during assessment, either by 
adopting appropriate factors in deterministic verifications or by introducing probabilistic 
model factors in reliability analysis. 

When an existing structure is analysed, conversion factors reflecting the influence of 
shape and size effect of specimens, temperature, moisture, duration-of-load effect, etc., should 
be taken into account. The level of knowledge about the condition of components should be 
also considered. This can be achieved by adjusting the assumed variability in either the load 
carrying capacity of the components or the dimensions of their cross sections, depending on 
the type of structure. 

When deterioration of an existing structure is observed, the deterioration mechanisms 
shall be identified and a deterioration model predicting the future performance of the structure 
shall be determined on the basis of theoretical or experimental investigation, inspection, and 
experience. 

 
 

7 VERIFICATION 
 
Reliability verification of an existing structure shall be made using valid codes of 

practice, as a rule based on the limit state concept. Attention should be paid to both the 
ultimate and serviceability limit states. Verification may be carried out using partial safety 
factor or structural reliability methods with consideration of structural system and ductility of 
components. The reliability assessment shall be made taking into account the remaining 
working life of a structure, the reference period, and changes in the environment of a structure 
associated with an anticipated change in use. 

The conclusion from the assessment shall withstand a plausibility check. In particular, 
discrepancies between the results of structural analysis (e.g. insufficient safety) and the real 
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structural condition (e.g. no sign of distress or failure, satisfactory structural performance) 
must be explained. It should be kept in mind that many engineering models are conservative 
and cannot be always used directly to explain an actual situation.  

The target reliability level used for verification can be taken as the level of reliability 
implied by acceptance criteria defined in proved and accepted design codes. The target 
reliability level shall be stated together with clearly defined limit state functions and specific 
models of the basic variables. 

The target reliability level can also be established taking into account the required 
performance level for the structure, the reference period and possible failure consequences. In 
accordance with ISO 2394 [1] the performance requirements for assessment of existing 
structures are the same as for design of a new structure. Lower reliability targets for existing 
structures may be used if they can be justified on the basis of economical, social and 
sustainable consideration (see Annex F to ISO 13822 [2]). 

An adequate value of the reliability index β should be in general determined [2] 
considering appropriate reference period. For serviceability and fatigue the reference period 
equals the remaining working life, while for the ultimate limit states the reference period is in 
principle the same as the design working life specified for new structures (50 years for 
buildings). This general approach should be in specific cases supplemented by detailed 
consideration of the character of serviceability limit states (reversible, irreversible), fatigue 
(inspectable, not inspectable) and consequences of ultimate limit states (economic 
consequences, number of endangered people).  

 
 

8 ASSESSMENT IN THE CASE OF DAMAGE 
 
For an assessment of a damaged structure the following stepwise procedure is 

recommended: 
 
1) Visual inspection 
It is always useful to make an initial visual inspection of the structure to get a feel for 

its condition. Major defects should be reasonably evident to the experienced eye. In the case 
of very severe damage, immediate measures (like abandonment of the structure) may be 
taken. 

 
2) Explanation of observed phenomena 
In order to be able to understand the present condition of the structure, one should 

simulate the damage or the observed behaviour, using a model of the structure and the 
estimated intensity of various loads or physical/chemical agencies. It is important to have 
available the documentation with respect to design, analysis and construction. If there is a 
discrepancy between calculations and observations, it might be worthwhile to look for design 
errors, errors in construction, etc.  

 
3) Reliability assessment 
Given the structure in its present state and given the present information, the reliability 

of the structure is estimated, either by means of a failure probability or by means of partial 
factors. Note that the model of the present structure may be different from the original model. 
If the reliability is sufficient (i.e. better than commonly accepted in design) one might be 
satisfied and no further action is required. 
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4) Additional information 
If the reliability according to step 3 is insufficient, one may look for additional 

information from more advanced structural models, additional inspections and measurements 
or actual load assessment. The updating techniques about how to use this information have 
been discussed in section 5. 

 
5) Final decision 
If the degree of reliability is still too low, one might decide to: 
- accept the present situation for economical reasons; 
- reduce the load on the structure; 
- repair the building; 
- start demolition of the structure. 
 
The first decision may be motivated by the fact that the cost for additional reliability is 

much higher for existing structure than for a new structure. Those who claim that a higher 
reliability should be generally required for a new structure than for an existing one sometimes 
use this argument. However, if human safety is involved, economical optimisation has a 
limited significance. 

 
 

9 FINAL REPORT AND DECISION 
 

The final report on structural assessment and possible interim reports (if required) 
should include clear conclusions with regard to the objective of the assessment based on 
careful reliability assessment and cost of repair or upgrading. The report shall be concise and 
clear. A recommended report format is indicated in Annex G to ISO 13822 [2]. 

 
If the reliability of an existing structure is sufficient, no action is required. If an 

assessment shows that the reliability of a structure is insufficient, appropriate interventions 
should be proposed. Temporary intervention may be recommended and proposed by the 
engineer if required immediately. The engineer should indicate a preferred solution as a 
logical follow-up to the whole assessment in every case. 

 
It should be noted that the client in collaboration with the relevant authority should 

make the final decision on possible interventions, based on engineering assessment and 
recommendations. The engineer performing the assessment might have, however, the legal 
duty to inform the relevant authority if the client does not respond in a reasonable time.  
 
 
10 CONCLUDING REMARKS 
 

Assessment of existing structures is usually based on two common rules: 
- Currently valid codes for verification of structural reliability are considered, historic 

codes valid in the period when the structure was designed, should be used only as guidance 
documents; 

- Actual characteristics of structural material, action, geometric data and structural 
behaviour should be considered; the original design documentation including drawing should 
be used as guidance material only. 
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The most important step of the whole assessment procedure is evaluation of inspection 
data and updating of prior information concerning strength and structural reliability. It appears 
that a Bayesian approach can provide an effective tool.  

Typically, assessment of existing structures is a cyclic process in which the first 
preliminary assessment is often supplemented by subsequent detailed investigations and 
assessment. A report on structural assessment prepared by an engineer should include a 
recommendation on possible intervention. However, the client in collaboration with the 
relevant authority should make the final decision concerning possible interventions. 
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APPENDIX A - GENERAL FLOW OF ASSESSMENT OF EXISTING 
STRUCTURES 

 

 

Requests/Needs 

Specification of the assessment objectives and plan 

Scenarios 

Preliminary assessment 
- Study of documents and other evidence 
- Preliminary inspection 
- Preliminary checks 
- Decisions on immediate actions 
- Recommendation for detailed assessment 

Detailed assessment? 

- Detailed documentary search and review 
- Detailed inspection  
- Material testing and determination of actions 
- Determination of properties of the structure 
- Structural analysis 
- Verification of structural reliability  

Further inspection? 

Construction 
- Repair 
- Upgrading 
- Demolition 

Reporting results of assessment 

Judgement and decision 

Intervention 

Operation 
- Monitoring 
- Change in use 

- Periodical inspection 
- Maintenance 

Sufficient reliability? 

No 

No

Yes 

Yes

No 

Yes 
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APPENDIX B - PROBABILITY UPDATING 
 
This example of probability updating is adopted from [4] and [5]. Consider the limit 

state function G(X), where X is a vector of basic variables, and the failure F is described by 
the inequality G(X) < 0. If the result of an inspection of the structure I is an event described 
by the inequality H > 0 then using equation (1) in the main text the updated probability of 
failure P(F| I) may be written as  
 

 P(F| I) = P(G(X) < 0| H > 0) = 
)0(

)00)(G(P
>

>∩<
HP

HX  (B.1) 

 
 For example consider a simply supported steel beam of the span L exposed to 
permanent uniform load g and variable load q. The beam has the plastic section modulus W 
and the steel strength fy.   
 Using the partial factor method the design condition Rd − Sd > 0 between the design 
value Rd of the resistance R and design value Sd of the load effect S may be written as  
 
 W fyk /γm - (γg gkL2/8 + γq qkL2/8) > 0  (B.2) 
 
where fyk denotes the characteristic strength, gk the characteristic (nominal) value of 
permanent load g, qk the characteristic (nominal) value of variable load q, γm partial factor of 
the steel strength, γg the partial factor of permanent load and γq the partial factor of variable 
load. By analogy to (B.2) the limit state function G(X) follows as  
 
 G(X) = R - S = W fy - (gL2/8 + qL2/8)  (B.3) 
 
where all the basic variables are generally considered as random variables described by 
appropriate probabilistic models.  
 

To verify its reliability the beam has been investigated and a proof loading up to the 
level qtest is carried out. It is assumed that gact is the actual value of the permanent load g. If 
the beam resistance is sufficient the information I obtained is described as 
 
 I = {H > 0} = {W fy - (gact L2/8 + qtest L2/8) > 0 } (B.4) 
 
where fy is the actual steel strength, gact the actual permanent load assuming it has been 
determined (using non-destructive methods) reasonably accurately.  
 To determine the updated probability of failure P(F| I) using equation (B.1) it is 
necessary to assess the following two probabilities: 
 
 P(G(X) < 0 ∩ H > 0)=P(W fy -(gL2/8 + qL2/8) < 0 ∩ W fy-(gact L2/8 + qtest L2/8) > 0) (B.5) 
 
 P(H > 0) = P(W fy - (gact L2/8 + qtest L2/8) > 0) (B.6) 
 
Additional assumptions concerning the basic variables are needed. Having the results of (B.5) 
and (B.6) the updated probability of failure P(G(X) < 0| H > 0) follows from (B.1).  
 Alternatively, considering results of the proof test, the probability density function 
fR(r) of the beam resistance R = Wfy may be truncated below the proof load as indicated in 
Figure B.1. 
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fR(r)

 r

updated resistance R

 prior resistance R

 resistance adequate to proof load
 

Figure B.1 Truncated effect of proof loading on structural resistance. 
 
 

 Obviously, the truncation of structural resistance R decreases the updated probability 
of structural failure defined as  
 
 Pf = P(R − S < 0) (B.7) 
 
and increase, therefore, the updated value of structural reliability. 
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APPENDIX C - BAYESIAN METHOD FOR FRACTILE ESTIMATION 
 

Fractiles of basic variables can be effectively updated using the Bayesian approach 
described in ISO 12491 [3]. This procedure is limited here to a normal variable X only for 
which the prior distribution function ′Π (μ,σ) of μ and σ is given as 

 ( ) ( )( ) ( ) ( )[ ]′ = − ′ ′ + ′ − ′
⎧
⎨
⎩

⎫
⎬
⎭

− + ′+ ′Π μ σ σ
σ

ν μν δ, C s n mn1
2

2 21
2

exp  (C.1) 

where C   is the normalising constant, δ (n') = 0 for n' = 0 and δ (n') = 1 otherwise. The prior 
parameters m', s', n', ν' are parameters asymptotically given as 

 E(μ) = m', E(σ) = s', V(μ) = ′

′ ′

s
m n

, ( )V σ
ν

=
′

1
2

 (C.2) 

while the parameters n' and ν' are independent and may be chosen arbitrarily (it does not hold 
that ν' = n' – 1). In equation (C.2) E(.) denotes the expectation and V(.) the coefficient of 
variation of the variable in brackets. Equations (C.2) may be used to make estimates for 
unknown parameters n' and ν' provided the values V(μ) and V(σ) are estimated using 
experimental data or available experience.  

The posterior distribution function Π"(μ,σ) of μ and σ is of the same type as the prior 
distribution function, but with parameters m", s", n" and ν", given as 
 

n" = n' + n     
ν" = ν' + ν + δ ( ′n ) (C.3) 
m"n"= n'm' + nm 
ν"(s")2 + n"(m")2 = ν'(s')2 + n'(m')2 + νs2 + nm2 

 
where m and s are the sample mean and standard deviation, n is the size of the observed 
sample and ν = n − 1. The predictive value xp,pred of a fractile xp is then 
 
 nstmx payesp ′′+′′+′′= /11B,  (C.4) 
 
where tp is the fractile of the t-distribution (see Table C.1) with ν" degrees of freedom. If no 
prior information is available, then n'= ν'= 0 and the characteristics m", n", s", ν" equal the 
sample characteristics m, n, s, ν. Then equation (C.4) formally reduces to so called prediction 
estimates of the fractile given as  
 
 nstmx pp /11pred, ++=  (C.5) 
where tp denotes again the fractile of the t-distribution (Table C.1) with ν degrees of freedom. 
Furthermore, if the standard deviation σ is known (from the past experience), then ν  = ∞ and 
s shall be replaced by σ.  

 

Example 
A sample of n = 5 concrete strength measurements having the mean m = 29,2 MPa and standard 
deviation s = 4,6 MPa is to be used to assess the characteristic value of the concrete strength fck 
= xp, where p = 0,05. If no prior information is available, then n'= ν'= 0 and the 
characteristics m", n", s", ν" equal the sample characteristics m, n, s, ν. The predictive value 
of xp then follows from (C.5) as  
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 MPa 15,5 = 1+
6
1 4,3 1,8 - 23,9 ×× = f Bayescu,  

 
where the value tp = − 2.13 is taken from Table C.1 for 1 − p = 0.95 and ν = 5 − 1 = 4. When 
information from previous production is available the Bayesian approach can be effectively used. 
Assume the following prior information 

 m’ = 30,1 MPa, V(m’) = 0,50, s’ = 4,4 MPa, V(s’) = 0,28 

 It follows from equation (C.2) 

 1 < 
0,50

1 
30,1
4,6 = 

2

⎟
⎠

⎞
⎜
⎝

⎛′n  , 6  
0,28

1 
2
1 = 2 ≈′ν  

 
The following characteristics are therefore considered: n' = 0 and ν' = 6. Taking into account that 
ν  = n - 1 = 4, equations (C.3) yield  

 Mpa4,3MPa23,9116,   = s ,  = x , =  = n ′′′′′′′ ν  

and finally it follows from equation (C.4) 

 MPa 15,5 = 1+
6
1 4,3 1,8 - 23,9 ×× = f Bayescu,  

where the value tp = − 1.81 is taken from Table C.1 for 1 − p = 0.95 and ν = 10. 
 
In this example the resulting characteristic strength is greater (by about 10 %) than the 

value obtained by prediction method without using prior information. Thus, when previous 
information is available the Bayesian approach may improve (not always) the fractile estimate, 
particularly in the case of a great variance of the variable. In any case, however, due caution 
should be paid to the origin of the prior information with regard to the nature of considered 
variable. 
 
Table C.1 - Fractiles − tp  of the t-distribution with  ν  degrees of freedom 
ν   1 − p    ν   1 − p   
 0,90 0,95 0,975 0,99 0,995   0,90 0,95 0,975 0,99 0,995 
3 
4 
5 
6 
7 
8 
9 
10 

1,64 
1,53 
1,48 
1,44 
1,42 
1,40 
1,38 
1,37 

2,35 
2,13 
2,02 
1,94 
1,89 
1,86 
1,83 
1,81 

3,18 
2,78 
2,57 
2,45 
2,36 
2,31 
2,26 
2,23 

4,54 
3,75 
3,37 
3,14 
3,00 
2,90 
2,82 
2,76 

5,84 
4,60 
4,03 
3,71 
3,50 
3,36 
3,25 
3,17 

 12 
14 
16 
18 
20 
25 
30 
∞ 

1,36 
1,35 
1,34 
1,33 
1,32 
1,32 
1,31 
1,28 

1,78 
1,76 
1,75 
1,73 
1,72 
1,71 
1,70 
1,64 

2,18 
2,14 
2,12 
2,10 
2,09 
2,06 
2,04 
1,96 

2,68 
2,62 
2,58 
2,55 
2,53 
2,49 
2,46 
2,33 

3,06 
2,98 
2,92 
2,88 
2,85 
2,79 
2,75 
2,58 
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ATTACHMENTS 
 
1. MATHCAD sheet “Update.mcd“ 
 MATHCAD sheet Update is intended for determination of updated probability using 
Bayes formula. Prior probabilities and likelihoods are taken from file “update.prn” 
2. MATHCAD sheet “BayesFract.mcd” 

MATHCAD sheet BayesFract intended for determination of the characteristic and 
design values and material partial factor γM using test data in accordance to EN 1990, 
Annex D. 
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Attachment 1 - MATHCAD sheet “Update.mcd“ 
"Update.mcd" is MATHCAD sheet for probability updating

Probability updating using Bayes formula

or 

where p' ~ P(Bi) denotes prior probabilities, l~ P(A|Bi) likelihoods and p''~ P(Bi) updated
(posterior)  probabilities.

1 Reading data for apriory probabilties and likelihoods from file

DATA READPRN "Update.prn"( ):= Check vaue

Apriory probabilities p DATA 0〈 〉
:= n length p( ):= n 2=

Likelihoods l DATA 1〈 〉
:=

2 Updated (posterior) probabilities p'' i pp
p l⋅( )
→⎯

p l⋅
:= pp

0.889

0.111
⎛
⎜
⎝

⎞
⎟
⎠

=

3 Alternative specification of input data using directly this sheet

Prior probabilities pi' p 0.8 0.2 0 0 0 0 0 0 0 0( )T:=

Likelihoods li l 1. 0.5 1 1 1 1 1 1 1 1( )T:=

4 Updated (posterior) probabilities p'' i pp
p l⋅( )
→⎯

p l⋅
:=

5 Listing of the updated probabilities

pp0 0.889=

pp1 0.111=
pp

0

0
1

2

3

4

5

6

7

8
9

0.889
0.111

0

0

0

0

0

0

0
0

=
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Attachment 2 - MATHCAD sheet “BayesFract.mcd” 

MATHCAD sheet "BayesFract" for estimation of sample fractile
MATHCAD sheet for determination of the characteristic and design values and material
partial factor γM using test data in accordance to EN 1990, Annex D.

1. Coefficients of variations of prior mean and stadard deviation 

Vσ .01 0.02, 0.8..:= Vμ .01 0.02, 0.8..:=

2. Prior and current observations

Prior obcervations: m1 30.1:= s1 4.4:=

Current observation: m 29.2:= s 4.6:= n 5:= ν n 1−:=

3. Estimates of prior n' and ν ' assuming Vμ and V σ

Size n1

Degrees of freedom ν1

n1 Vμ( ) floor
s1

m1 Vμ⋅
⎛⎜
⎝

⎞⎟
⎠

2⎡
⎢
⎣

⎤
⎥
⎦

:= n1 0.5( ) 0=

ν1 Vσ( ) floor
1

2 Vσ
2

⋅

⎛
⎜
⎝

⎞
⎟
⎠

:= ν1 0.28( ) 6=

Updated size n2

Updated ν2

n2 Vμ( ) n n1 Vμ( )+:= n2 0.5( ) 5=

ν2 Vμ Vσ,( ) ν ν1 Vσ( )+ 1− n1 Vμ( ) 1≥if

ν ν1 Vσ( )+ otherwise

:=
ν2 0.5 0.28,( ) 10=

4. Updated means and standard deviations

m2 Vμ( ) m n⋅ m1 n1 Vμ( )⋅+

n2 Vμ( )
:= m2 0.5( ) 29.2=

s2 Vμ Vσ,( ) ν s2
⋅ ν1 Vσ( ) s12

⋅+ n m2
⋅+ n1 Vμ( ) m12

⋅+ n2 Vμ( ) m2 Vμ( )2
⋅−

ν2 Vμ Vσ,( )
:= s2 0.5 0.3,( ) 4.49=

5. Coeficients of fractile estimates for probability select the probability p 0.05:=

p fractile V unknown
qt inverse Student's
distribution 

ks Vμ Vσ,( ) qt p ν2 Vμ Vσ,( ),( ) 1
1

n2 Vμ( )
+:=

p fractile V known
qnorm is inverse 
normal distribution

kσ Vμ( ) qnorm p 0, 1,( ) 1
1

n2 Vμ( )
+⋅:=
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6. Fractile estimates

Standard deviation s2 unknown

xp Vμ Vσ,( ) m2 Vμ( ) ks Vμ Vσ,( ) s2 Vμ Vσ,( )+:= xp 0.5 0.28,( ) 20.303=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

16

18

20

22

24

xp 0.5 Vσ,( )

xp 0.1 Vσ,( )

VσFigure 1. Variation of the frictile xp with V σ for selected Vμ.

Standard deviation s2 is known, for example  s2=s2(0.5,0.28) 

xσp Vμ( ) m2 Vμ( ) kσ Vμ( ) s2 0.5 0.28,( )+:= xσp 0.5( ) 21.126=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

16

18

20

22

24

xp Vμ 0.28,( )

xp Vμ 0.8,( )

Vμ
Figure 2. Variation of the frictile xp with V μ for selected Vσ.  
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n1 0.5( ) 0=

n1 0.1( ) 2=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

n1 Vμ( )

n2 Vμ( )

ν2 Vμ 0.28,( )

Vμ

m2 0.5( ) 29.2=

m2 0.1( ) 29.457=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

s2 0.5 Vσ,( )

s2 0.1 Vσ,( )

Vσ  
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CHAPTER VI - PRINCIPLES OF RISK ASSESSMENT 
 

 
Milan Holický1 

 
1Klokner Institute, Czech Technical University in Prague, Czech Republic  

 
 
 
Summary  

 
Traditional methods for designing of civil engineering structures and other engineering 

systems are frequently based on the concept of target probability of failure. However, this 
fundamental quantity is usually specified on the basis of comparative studies and past 
experience only. Moreover, probabilistic design methods suffer from several deficiencies, 
including lack of consideration for accidental and other hazard situations and their 
consequences. Both of these extreme conditions are more and more frequently becoming 
causes of serious failures and other adverse events. Available experience clearly indicates that 
probabilistic design procedures may be efficiently supplemented by a risk analysis and 
assessment, which can take into account various consequences of unfavourable events. It is 
therefore anticipated that in addition to traditional probabilistic concepts the methods of 
advanced engineering design will also commonly include criteria for acceptable risks. 
 
 
1 INTRODUCTION 

 
1.1 Background documents 

Background documents of the risk analysis of civil engineering systems considered in 
this contribution consist of a number of national and international documents [1] to [9]. It 
should be noted that Eurocode EN 1990 [10] for design of civil structures is based on the 
concept of the target probability of failure pd. However, it is well recognised that the reliability 
of structures and other engineering systems suffers from a number of uncertainties that can 
hardly be analysed and well described by probabilistic methods [11, 12]. Moreover, traditional 
probabilistic concepts consider the significance of failure and other adverse events only very 
vaguely [10]. That is why probabilistic methods are often supplemented by recently developing 
methods of risk assessment [12]. In some countries, risk assessment even becomes compulsory 
by law in the case of complex technical systems (power stations, tunnel routes). 

 
1.2 General principles 

General principles of the risk analysis and the common tools applied for investigating 
civil engineering systems considered in this contribution follow the basic concepts presented in 
documents [1] to [9]. The risk analysis is an important part of the risk assessment and the entire 
risk management of a system as indicated in Figure 1 (adopted from [2]). 

The risk analysis of a system consists of the use of all available information to estimate 
the risk to individuals or populations, property or the environment, from identified hazards. 
Risk assessment further includes risk evaluation (acceptance or treatment) as indicated in 
Figure 1 (adopted from [2]). The whole procedure of the risk assessment is typically an 
iterative process as indicated in Figure 2 (adopted from [9]). The first step in the risk analysis 
involves the context (scope) definition related to the system and the subsequent identification 
of hazards. 
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Figure 1. A framework for risk management (adopted from [2]). 
 
The system is understood [2] as a bounded group of interrelated, interdependent or 

interacting elements forming an entity that achieves in its environment a defined objective 
through interaction of its parts. In the case of technological hazards related to civil engineering 
works, a system is normally formed from a physical subsystem, a human subsystem, their 
management, and the environment. Note that the risk analysis of civil engineering systems 
(similarly as analysis of most systems) involves usually several interdependent components 
(e.g. human life, injuries, economic loss). 

Any technical system may be exposed to a multitude of possible hazard situations. In 
the case of civil engineering facilities, hazard situations may include both, environmental 
effects (wind, temperature, snow, avalanches, rock falls, ground effects, water and ground 
water, chemical or physical attacks, etc.) and human activities (usage, chemical or physical 
attacks, fire, explosion, etc.). As a rule hazard situations due to human errors are more 
significant than hazards due to environmental effects. 

 
 

2 HAZARD IDENTIFICATION 
 

A hazard is a set of circumstances, possibly occurring within a given system, with the 
potential for causing events with undesirable consequences. For instance the hazard of a civil 
engineering system may be a set of circumstances with the potential to an abnormal action (e.g. 
fire, explosion) or environmental influence (flooding, tornado) and/or insufficient strength or 
resistance or excessive deviation from intended dimensions. In the case of a chemical 
substance, the hazard may be a set of circumstances likely to cause its exposure [2]. 

Hazard identification and modelling is a process to recognize the hazard and to define 
its characteristics in time and space. In the case of civil engineering systems the hazards Hi may 
be linked to various design situations of the building (as defined in [7]) including persistent, 
transient and accidental design situation. As a rule Hi are mutually exclusive situations (e.g. 
persistent and accidental design situations of a building). Then if the situation Hi occurs with 
the probability P{Hi}, it holds ∑P{Hi} = 1. If the situations Hi are not mutually exclusive, then 
the analysis becomes more complicated.  

 

 

 

  

Risk management 
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Risk  
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Risk 
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Figure 2. Flowchart of iterative procedure for the risk assessment (adopted from [9]). 

 
 
Note that in some documents (for example in the recent European document EN 1990 

[10]) the hazard is defined as an event, while in risk analysis [2] it is usually considered as a 
condition with the potential for causing event, thus as a synonym to danger. 

 
 

3 DEFINITION AND MODELLING OF RELEVANT SCENARIOS  
 
Hazard scenario is a sequence of possible events for a given hazard leading to undesired 

consequences. To identify what might go wrong with the system or its subsystem is the crucial 
task to risk analysis. It requires detail examination and understanding of the system [6]. 
Nevertheless, a given system is often a part of a larger system. Consequently, modelling and 
subsequent analysis of the system is a conditional analysis.  

The modelling of relevant scenarios may be dependent on specific characteristics of the 
system. For this reason a variety of techniques have been developed for the identification of 
hazards (e.g. PHA HAZOP) and for the modelling of relevant scenarios (fault tree, event 
tree/decision trees, causal networks). Detail description of these techniques is beyond the scope 
of this contribution, may be however found in [6, 9] and other literature.  
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4 ESTIMATION OF PROBABILITIES 
 
Probability is generally the likelihood or degree of certainty of a particular event 

occurring during a specified period of time. In particular, reliability of a structure is often 
expressed as probability related to a specific requirement and a given period of time, for 
example 50 years [3,10]. 

Assuming that a system may be found in mutually exclusive situations Hi, and the 
failure F of the system (e.g. of the structure or its element) given a particular situation Hi 
occurs with the conditional probability P{F|Hi}, then the total probability of failure pF is given 
by the law of total probability (see for example [11]) as: 

 pF = ∑
i

ii HFH }|{P}{P  (1) 

Equation (1) can be used for the modification of the partial probabilities P{Hi}P{F|Hi} 
(appropriate to the situations Hi) with the aim to comply with the design condition pF < pt, 
where pt is a specified target probability of failure. The target value pt may be determined using 
the probabilistic optimisation of an objective function describing, for example, the total cost. 

The conditional probabilities P{F|Hi} must be determined by a detail probabilistic 
analysis of the respective situations Hi under relevant scenarios. The traditional reliability 
methods [8] assume that the failure F of the system can be well defined in the domain of the 
vector of basic variables X. For example, it is assumed that a system failure may be defined by 
the inequality g(x) < 0, where g(x) is the so called limit state function, where x is a realisation 
of the vector X. Note that g(x) = 0 describes the boundary of the limit state, and the inequality 
g(x) > 0 the safe state of a structure. 

If the joint probability density fX(x|Hi) of basic variables X given situation Hi is known, 
the conditional probability of failure P{F|Hi} can be then determined [6] using the integral 

 P{F|Hi} = ∫
<0)(g

d)|(f
x

X xx iH  (2) 

It should be mentioned that the probability P{F|Hi} calculated using equation (2) suffers 
generally from two essential deficiencies: 

- uncertainty in the definition of the limit state function g(x), 
- uncertainty in the theoretical model for the density function fX(x|Hi) of basic variables 

X [8]. 
These deficiencies are most likely the causes of the observed discrepancy between the 

determined probability pF and actual frequency of failures; this problem is particularly 
disturbing in case of fire. Yet, the probability requirement pF < pt is generally accepted as a 
basic criterion for design of structures. 

In a risk analysis we need to know not only probability of the structural failure F but 
probabilities of all events having unfavourable consequences. In general, the situations Hi may 
cause a number of events Eij (e.g. excessive deformations, full development of the fire). The 
required conditional probabilities P{Eij|Hi} must be estimated by a separate analysis using 
various methods, for example the fault tree method or causal networks.  

 
 

5  ESTIMATION OF CONSEQUENCES 
 
Consequences are possible outcomes of a desired or undesired event that may be 

expressed verbally or numerically to define the extent of human fatalities and injuries or 
environmental damage and economic loss [1]. A systematic procedure to describe and/or 
calculate consequences is called consequence analysis. Obviously, consequences are generally 
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not one-dimensional. However in specific cases they may be simplified and described by 
several components only, e.g. by human fatalities, environmental damage and costs. At present 
various costs are usually included only. It is assumed that adverse consequences of the events 
Eij can be normally expressed by several components Cij,k, where the subscript k denotes the 
individual components (for example the number of lost lives, number of human injuries and 
damage expressed in a certain currency).  

 
 

6 ESTIMATION OF RISK 
 
Risk is a measure of the danger that undesired events represent for humans, 

environment or economic values. Risk is commonly expressed in the probability and 
consequences of the undesired events. It is often estimated by the mathematical expectation of 
the consequences of an undesired event. Then it is the product "probability × consequences". 
However, a more general interpretation of the risk involves probability and consequences in a 
non-product form. This presentation is sometimes useful, particularly when a spectrum of 
consequences, with each magnitude having its own probability of occurrence, is considered [2].  

The estimation of risk is the process used to produce an estimate of a measure of risk. 
As already stated above the risk estimation is based on the hazard identification and generally 
contains the following steps: scope definition, frequency analysis, consequence analysis, and 
their integration [2]. If there is one-to-one mapping between the consequences Cij,k and the 
events Eij, then the risk component Rk related to the considered situations Hi is the sum 

 Rk = ∑
ij

iiijkij HHEC }{P}|{P,  (3) 

If the dependence of consequences on events is more complicated than just one-to-one 
mapping, then equation (3) will have to be modified. A practical example of equation (3) can 
be found in [10], where an attempt to estimate the risk due to persistent and fire design 
situation is presented.  

In some cases it is possible to deal with one-component risk R only. Then the subscript 
k in equation (2.3) may be omitted. Moreover, probability of undesired events may depend on 
the vector of basic variables X. Then the total risk R may be formally written as  

 R = ∫ xxx X d)(f)(C  (4) 

where R(x) denotes the degree of risk as a function of basic variables X, and fX(x) denotes joint 
probability density function X.  

 
 

7 LOGIC TREES 
 
A number of different logic (decision) trees (fault tree, event tree, cause/consequence 

chart) have been developed to analyse the risk of a system [11] to [13]. Applications of logic 
trees significantly improve the completeness and clarity of the engineering work. The use of 
this kind of tool is widespread in risk analysis and implies some important advantages. 
Influences of the environment and of human activities can easily be considered simultaneously. 
Logic trees can also enable the detection of the most effective countermeasures. Furthermore, 
they can be easily understood by inexperienced persons and therefore can provide very 
effective communication means between experts and public authorities.  

The fault tree can be defined as a logical diagram for the representation of combinations 
of influences that can lead to an undesired event. When establishing a fault tree, the undesired 
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event constitutes the starting point. Going out from this event, possible causes are to be 
identified. The possible causes and consequences are to be linked in a logic way, without 
introducing any loops. Every event that is not a consequence of the previous event has to be 
considered as an independent variable. 

An example of the fault tree shown in Figure 3 describes the failure of a plane frame 
(indicated at the bottom of Figure 3).  

 

 
Figure 3. Fault tree describing the failure of a plane frame. 

 
Fault trees can be used to clarify the causes of failures in case that they are unknown. 

The most common application, however, consists in detecting possible causes of undesirable 
events before they can occur. Since the fault trees also show the possible consequences of 
events, they are very useful for the establishment of the most accurate measures for prevention 
of these events.  
 An event tree identifies possible subsequent events starting from an initial event. Each 
path consists of a sequence of events and ends up at the consequence level (for example at 
structural failure, see Figure 4). The aim of the event tree analysis is to identify possible 
consequences of an initial event and to calculate probabilities of the occurrence of these 
consequences corresponding to a different sequence of events.  
 Simple examples of an event tree describing the collapse of a structure under persistent 
and fire (accidental) design situation is shown in Figure 4. The probabilities indicated in Figure 
4 are illustrative values only (correspond approximately to a 50-year period of an 
administrative building having the fire compartment area 250 m2 with a protected steel 
structure and without sprinklers). 
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Figure 4. Event tree describing the collapse of a structure under persistent and fire design 
situation (all data are approximately related to a 50-year period of an administrative building 

having the fire compartment area 250 m2 without sprinklers and with a protected steel 
structure). 

 
 Logic trees may be supplemented by the consequences of events; graphical 
representation of such a tree is called the cause/consequence-chart. The consequence chart 
corresponds to an event tree with a suitable representation of expected consequences. For 
example Figure 4 may include consequences linked to each failure probability (frequency per 
year) of the structural collapse under given conditions. Then the tree may be used for the 
cause/consequence or risk (utility) analysis. 

The simplest form of the cause/consequence consideration is the so-called prior-analysis 
of the risk (utility) when the basic statistical and probabilistic information is available prior to 
any decision or activity. The prior analysis is an assessment of the risk associated with different 
decisions; commonly used for comparing the risks corresponding to different decisions. The 
posterior decision analysis differs from the prior analysis by considering possible changes in 
the branching probabilities and/or the consequences due to risk reducing measures, risk 
mitigating measures and the collection of additional information. The posterior decision 
analysis may be used to evaluate different additional activities affecting the total risk.  

Other important modification of logic trees is known as the pre-posterior decision 
analysis. The aim of the pre-posterior decision analysis is to identify the optimal decisions with 
regard to activities that may be performed in the future, e.g. planning of risk reducing activities 
and/or the collection of new information. An important pre-requisite for the pre-posterior 
decision analysis is the consideration of future actions that may be applied taking into account 
the results of the planned activities.  
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8 BAYESIAN NETWORK 

 
Another promising tool for the risk analysis seem to be Bayesian (believe) causal 

networks [13,14]. A simple example of the causal network is shown in Figure 5. The network 
containing only four chance nodes describes the structural failure under persistent and fire 
design situation similarly as the event tree in Figure 4. Compared with the event tree shown in 
Figure 4 the network in Figure 5 includes also the effect of sprinklers (node B). Note that the 
directional arrows in Figure 5 indicate the causal links between interconnected chance nodes. 

 
Figure 5. The causal network describing the structural failure under persistent and fire design 

situation. 
 
The collapse of a structure depends on the probability of persistent and fire situation 

and on the conditional probabilities of full development of fire, that depends on the ability of 
sprinklers and on conditional probability of the structural collapse under the conditions given 
by parents nodes (for example when fire is fully developed - fire flash over). Obviously the 
causal network representation seems to be much more effective than the event tree version. 
Moreover each node may have several states. Consequently, the input data are not indicated 
directly in the graphical representation of the network but are given in the tables of conditional 
probabilities.  

The basic principle of probability calculation used in the Bayesian networks may be 
illustrated considering the nodes A, B and D of the network in Figure 5. One child node D (Fire 
flashover) is dependent on two parent nodes: A (Design situation) and B (Sprinklers). If the 
parents' nodes A and B have the discrete states Ai and Bj, then the probability of the event Dk (a 
particular state of the node D) is given by the formula 

 P(Dk) = ∑ P(Dk| AiBj)P(Ai) P(Bj) (5) 

Equation (5) represents the fundamental theoretical tool for analysing the Bayesian 
network. The input data consist of the probabilities P(Ai) and P(Bj), and the conditional 
probabilities P(Dk|AiBj). These extensive data are based on available statistical evidence, 
probabilistic analysis or expert assessment (judgement) and are transparently summarised in 
the tables of conditional probabilities. 

Bayesian networks supplemented by decision and utility nodes called influence 
diagrams [13,14] provide a powerful tool for the risk estimation. In fact the influence diagram 
is a generalisation of the cause/consequence-chart discussed above. The main features of this 
tool are illustrated by the example shown in Figure 6, which is an extension of the fundamental 
task indicated in Figure 5. Figure 6 shows a simplified influence diagram developed recently 
[15,16] for the risk analysis of buildings under persistent and fire design situation.  

E-CollapseA-Situation

D-Flashover

B - Sprinkler
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The network consists of seven chance nodes numbered 1, 2, 3, 4, 5, 12 and 14, four 
decision nodes 6, 7, 15 and 16, and six utility nodes 8, 9, 10, 11, 13 and 17. The utility nodes 
represent the costs of various fire safety measures (nodes 8, 10, 17), damage to the building 
(nodes 9, 11), and injuries (node 13). 

Directional arrows indicating the causal links between the parent and children nodes 
interconnect the chance, decision and utility nodes. All the causal links must be described by 
appropriate input data (conditional probabilities or utility units) linked to assumed states of the 
nodes. For example the utility nodes (except the utility node 13) are directly dependent on the 
size of the building (node 15). The utility node 13, describing the cost of injury, is affected by 
the size of the building through the number of endangered persons represented by chance node 
14. These data are sometimes difficult to specify, and an expert assessment has often to be 
often. 

 
Figure 6. The Bayesian network describing a structure under normal and fire design situations. 

 
The chance nodes 1, 2, 3, 4, 5, 12 and 14 represent alternative random variables having 

two or more states. The node 1-Situation describes the probability of fire start pfi,s = P(H2) and 
the complementary probability 1− pfi,s of normal situation H1. The chance node 2-Sprinklers 
describes the functioning of sprinklers provided that the decision (node 6) is positive; the 
probability of the active state of the sprinklers given the fire start is assumed to be very high, 
for example 0,999. The chance node 3-Flashover has two states: the design situation H3 (fire 
design situation without flashover) and H4 (fire design situation with flashover when the fire is 
fully developed). 

When sprinklers are installed, the flashover in a compartment of 250 m2 has the positive 
state with the conditional probability 0,002; if sprinklers are not installed then P{H4|H2} = 
0,066 [15,16]. It is assumed that with the probabilities equal to the squares of the above values 
the fire will flash over the whole building, thus the values 0,000004 and 0,0044 are considered 
for the chance node 3. The chance node 4-Protection (introduced for formal computational 
reasons) has identical states as the decision node 7-Protection. The chance node 5-Collapse 
represents the structural failure that is described by the probability distribution linked to three 
children nodes (1,3,4). This situation can hardly be modelled using a decision tree. Note that 
the probability of collapse in the case of fire but not flashover may be smaller than in a 
persistent situation, due to the lower imposed load. 
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9 DECISION-MAKING 
 
The decision-making is generally based on the process of the risk acceptance and option 

analysis (see Figure 1) that is sometimes referred to as the risk evaluation. The risk acceptance 
is based on various criteria of risk that are reference points against which the results of the risk 
analysis are to be assessed. The criteria are generally based on regulations, standards, 
experience, and/or theoretical knowledge used as a basis for the decision about the acceptable 
risk. Acceptance criteria and the criteria of risk may be sometimes distinguished [1]. Various 
aspects may be considered, including cultural, social, psychological, economical and other 
aspect [6], [17], [18] and [19]. Generally the acceptance criteria may be expressed verbally or 
numerically [6].  

Assuming for example that the acceptance limits Ck,d for the components Ck are 
specified, then it is possible to design the structure on the basis of acceptable risks using the 
criterion Ck < Ck,d, which may supplement the probability requirement pF < pt. 

It should be noted that various levels of risk might be recognized, for example 
acceptable risk, tolerable risk, and objective risk [6] (see the definitions of theses terms in [2]). 
It is a remarkable fact that the public seems to be generally better prepared to accept certain 
risks than to stand for specified probabilities of failure [17].  

 
 

10 THE IMPLIED COST OF AVERTING A FATALITY 
 
The consequences may generally include economic as well as social and environmental 

costs [17,18,19]. An example is provided by the influence diagram shown in Figure 6 used to 
assess the risk of a building due to fire. Thus, in order to compare all possible consequences it 
is necessary to express all consequences in terms of a single unit. This seems to be an 
extremely difficult task. One of the possible approaches is represented by the concept of the 
Implied Cost of Averting a Fatality IICCAAFF  or Life Quality index LQI [19]. Table 1 shows values 
of the cost ICAF for selected countries adopted from [19]. It appears that the cost ICAF may be 
estimated to about 1 to 3 million of USD. 
 
 
Table 1. The Implied Cost of Averting a Fatality – IICCAAFF((Δe)),,  financial data in PPP US$ (1999) 
obtained from UN-HDR 2001, World Bank. 
 

Country g- annual 
income 

e- life 
time 

2 w-
working 
part of e 

ICAF(Δe) 
[× 106] 

US 34000 77 0.15 2.6 
Japan 26000 81 0.15 2.1 
Germany 25000 77 0.125 1.9 
UK 22000 77 0.125 1.7 

Czech Republic 8000 75 0.15 0.6 

Mexico 8800 72 0.15 0.6 
South Africa 9100 55 0.15 0.5 
Colombia 5900 70 0.15 0.4 
China 3900 70 0.15 0.3 
India 2400 63 0.15 0.1 
Nigeria 800 47 0.18  0.04 
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The Implied Cost of Averting a Fatality ICAF can be expressed as  

 e
e
egeICAF w Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
+−=Δ

−
11

)1(1)(  (6) 

where symbols g, e and w are defined in Table 1. However, the concept of the Implied 
Cost of Averting a Fatality described by equation (6) is just one of possible approaches to the 
complex problem of evaluating social consequences. At present further intensive investigation 
is expected.  

 
 

11 CONCLUDING REMARKS 
 
Risk is commonly estimated by the mathematical expectation of the consequences of an 

undesired event that often leads to the product "probability × consequences". As a rule the risk 
of civil engineering systems is a multidimensional quantity having several components. 

The risk analysis is based on the hazard identification and generally contains the 
following steps: the scope definition, hazard identification, definition and modelling of hazard 
scenarios, estimation of probabilities, estimation of consequences, estimation of risk and 
decision-making. 

The most important contribution of the risk analysis and assessment consists in the 
systematic consideration of various consequences. Several techniques are available at present: 
the decision trees, the Bayesian belief networks and influence diagrams. Available experience 
indicates that the Bayesian belief networks provide a transparent, logical and effective tool for 
analysing engineering systems. It should however be underlined that any analysis of an 
engineering system is always dependent on the assumed input data, often of a very uncertain 
nature. The input data should be estimated with due regard to the specific technological and 
economic conditions of a given system. In particular, the economic, social and environmental 
consequences of adverse events should be further investigated.  

It appears that the methods of risk analysis and assessment may significantly contribute 
to further improvement of current engineering design. The remarkable fact that the public is 
better prepared to accept certain risks than to stand for specified probabilities of failure will 
make the application of the risk assessment easier. It is therefore anticipated that in the near 
future probabilistic methods in engineering will be supplemented by criteria for acceptable 
risks. 
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NOTATION 
 

Ai States of node A 
Bj States of node B 
Dk States of node D 
Cij Consequences of events Eij (utility, cost, damage, injuries) 
R  The total expected risk 
Rk  The risk component  
Eij Events  
Hi Hazard situation i. 
P(F/Hi) Probability of failure F given situation Hi 
e Expected life-time 
g Annual income 
w Working part of e 
g(x) Performance (limit state) function. 
pF Probability of failure F. 
pd Target probability of failure. 
pf Probability P(F|H2) of structural failure during fire. 
pfi,s  Probability of fire start P(H2). 
x  Generic point of the vector of basic variables.  
X Vector of basic variables. 
β Reliability index. 
ϕX(x) Probability density function of the vector of basic variables X. 

)(Φ 1
N Fp−  Inverse distribution function of a standardized normal variable. 
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Summary 
 

Elementary concepts and techniques of the theory of probability and mathematical 
statistics required for understanding of basic reliability methods are reviewed and illustrated 
by a number of numerical examples. Computational procedures for determination of sample 
characteristics, fractiles of common theoretical models and estimates for fractiles based on 
small samples can be applied using the attached MATHCAD sheets.  

 
 

1 INTRODUCTION 
 
1.1 Background materials 

Elementary concepts and techniques of the theory of probability and mathematical 
statistics applicable to civil engineering are available in a number of standards [1 to 5], 
background materials [6, 7, 8], software products [9, 10, 11] and books [12 to 24]. Additional 
information may be found in the extensive literature listed in the books [12, 13] and others. In 
particular, documents developed by JCSS [6, 7] and recently published handbook [8] are 
closely related to the statistical techniques described in this text.  
 
1.2 General principles 

The theory of structural reliability is based on a general principle that all the basic 
variables are considered as random variables having appropriate type of probability 
distribution. Different types of distributions should be used for description of actions, material 
properties and geometric data. Prior theoretical models of basic variables and procedures for 
probabilistic analysis are indicated in JCSS documents. Sample characteristics are used as 
estimates of population parameters. In addition the population fractiles must be often assessed 
using small samples. MATHCAD sheets that supplement described computational procedures 
can be effectively used in practical applications.  
 
 
2  POPULATION AND SAMPLES  
 
2.1 General 

Actions, mechanical properties and geometric data are generally described by random 
variables (mainly by continuous variables). A random variable X, (e.g. concrete strength), is 
such a variable, which may take each of the values of a specified set of values (e.g. any value 
from a given interval), with a known or estimated probability. As a rule, only a limited 
number of observations, constituting a random sample x1, x2, x3,..., xn of size n taken from a 
population, is available for a variable X. Population is a general statistical term used for the 
totality of units under consideration, e.g. for all concrete produced under specified conditions 
within a certain period of time. The aim of statistical methods is to make decisions concerning 
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the properties of the population using the information derived from one or more random 
samples. 

 
2.2 Sample characteristics 

A sample characteristic is a quantity used to describe the basic properties of a sample. 
The three basic sample characteristics, which are most commonly used in practical 
applications, are: 

- the mean m representing the basic measure of central tendency; 
- the variance s2 describing the basic measure of dispersion; and 
- the coefficient of skewness ω giving the basic measure of asymmetry. 
The sample mean m (an estimate of the population mean) is defined as the sum 

 m = (Σ xi) / n (2.1) 
with the summation being extended over all the n values of xi. 
 
The sample variance s2 (an estimate of the population variance), is defined as: 

 s2 = (Σ (xi - m)2) / (n - 1) (2.2) 

the summation being again extended over all values xi. Sample standard deviation s is the 
positive square root of the variance s2.  

The sample coefficient of skewness ω (an estimate of the population skewness) 
characterising asymmetry of the distribution is defined as  

 ω = [n (Σ (xi - m)3) / (n-1) / (n-2)] / s3 (2.3) 

Thus, the coefficient of skewness is derived from the central moment of order 3 
divided by s3. If the sample has more distant values to the right from the mean than to the left, 
the distribution is said to be skewed to the right or to have a positive skewness. If the reverse 
is true, it is said to be skewed to the left or to have a negative skewness.  

In some cases two different samples may be taken from one population and their 
combination is needed. If the original data are not available, then the characteristics of 
combined sample may be determined using the characteristics of both samples. If the sample 
sizes are n1, n2, the means m1, m2, standard deviations s1, s2 and skewnesses ω1, ω2, then the 
combined sample of the size n = n1+n2 has the characteristics 
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Another important characteristic describing the relative dispersion of a sample is the 
coefficient of variation v, defined as the ratio of standard deviation s to the mean m  

 v = s / m (2.5) 

The coefficient of variation v can be effectively used only if the mean m differs from 
zero. When the mean is much less than the standard deviation, then the standard deviation 
rather then the coefficient of variation should be considered as a measure of the dispersion. 
The coefficient of variation v is often used as a measure of production quality; for concrete 



Annex A - Basic statistical concepts and techniques 

A - 3 

strength may be expected within a broad range from 0,05 up to 0,20, for structural steel from 
0,07 to 0,10. 

 
2.3  Distribution function 

Probability distribution is a term generally used for any function giving the probability 
that a variable X belongs to a given set of values. The basic theoretical models used to 
describe the probability distribution of a random variable may be obtained from a random 
sample by increasing the sample size or by smoothing either the frequency distribution or the 
cumulative frequency polygon.  

An idealisation of a cumulative frequency polygon is the distribution function Φ(x) 
giving, for each value x, the probability that the variable X is less than or equal to x: 

 Φ(x) = P (X ≤ x) (2.6) 

A probability density function ϕ(x) is an idealisation of a relative frequency 
distribution. It is formally defined as the derivative (when it exists) of the distribution 
function: 

 ϕ(x) = dΦ(x) / dx (2.7) 
Note that Appendix 1 to this Chapter provides a review of selected theoretical models 

of continuous random variables that are most frequently used in reliability analysis of civil 
structures. 
 
Example 2.1.  

A continuous random variable, which may attain equally likely any point x within a 
two-sided interval <a, b> (each point x has the same probability density ϕ(x)) is described by 
a so-called uniform distribution shown in Figure 2.1. 

Figure 2.1. Uniform distribution 
 

The uniform distribution is a basic type of distribution used not only in simulation 
procedures but also in theoretical modelling of some actions and geometric data. Shapes of 
the distribution function Φ(x) and probability density function ϕ(x) for the uniform 
distribution are shown in Figure 2.1. We can easily observe that it is a general property of the 
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probability density function that the probability of a set of all values of any random variable is 
equal to 1  

 ∫
∞

∞−

ϕ(x)dx = ∫
b

a

ϕ(x)dx = 1 (2.8)  

Thus, the surface bounded by the horizontal axis x and the curve of the density function ϕ(x) 
has the area equal to unity. 
 
2.4 Population parameters 

The population parameters are quantities used in describing the distribution of a 
random variable, as estimated from one or more samples. As in the case of random samples, 
three basic population parameters are commonly used in practical applications:  

- the mean μ representing the basic measure of central tendency; 
- the variance σ2 as the basic measure of dispersion; and 
- the coefficient of skewness ω.giving the degree of asymmetry.  
The population mean μ, for a continuous variable X having the probability density 

ϕ(x), is defined as  

 μ = ∫ x ϕ(x)dx (2.9) 

the integral being extended over the interval of variation of the variable X. The population 
variance σ2, for a continuous variable X having the probability density function ϕ(x), is the 
mean of the squared deviation of the variable from its mean: 

 σ2 =∫ (x - μ)2 ϕ(x)dx (2.10) 

The population standard deviation σ is the positive square root of the population 
variance σ2. 

The population coefficient of skewness, characterising asymmetry of the distribution, 
is defined as  

 ω  = ∫ (x - μ)3 ϕ(x)dx / σ3 (2.11) 

Another population parameter based on the fourth order moment is called kurtosis ε.  

 ε  = ∫ (x - μ)4 ϕ(x)dx / σ4 - 3 (2.12) 

Note that for normal distribution (described in Section 3.1) the kurtosis ε defined by 
equation (2.12) is zero. However, this parameter is used mainly in theoretical consideration. 

Another important parameter of the population is the coefficient of variation V defined 
similarly as the sample coefficient of variation 

 V = σ / μ (2.13) 

The same restriction on the practical use of V applies as in the case of samples. 
Geometrically μ is actually the x coordinate of the centre of gravity of the area 

bounded by the horizontal axis x and the curve of density function ϕ(x). Figure 2.2 shows an 
example of probability density function of lognormal distribution illustrating the geometric 
interpretation of the mean μ and standard deviation σ.  

The measure of dispersion of a random variable X relative to the mean μ is given by 
the central moment of the second order (moment of inertia) of the area, and standard deviation 
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σ is therefore the centroidal radius of gyration around the mean μ of the area bounded by the 
horizontal axis x and the curve of probability density function ϕ(x). 

A very important population characteristic is the fractile xp. If X is a continuous 
variable and p is a probability (a real number between 0 and 1), the p-fractile xp is the value of 
the variable X for which the probability that the variable X is less than or equal to xp is p, and 
hence, for which the distribution function Φ(xp) is equal to p. Thus, 

 P (X ≤ xp) = Φ(xp) = p (2.14) 
In civil engineering the probabilities p = 0,001; 0,01; 0,05 and 0,10 are used most 

frequently. The probability p is often written as a percentage (e.g. p = 0,1 %; 1 %; 5 %; 10 
%). If this is done, then xp is called a percentile, for example the 5th percentile is used when p 
= 5 %. If p=50 %, then xp is called the median. More details about the fractiles of continuous 
variables are given in the following sections. 

 

Figure 2.2. Geometric illustration of the mean μ and standard deviation σ 
 
Example 2.2. 

Parameters of the uniform distribution from example 2.1 may be derived using 
equations (2.9) to (2.13) as  

 μ = (a+b)/2, σ = (b-a)/ 12 , ω = 0, ε = - 2,96, V = (b-a)/((a+b) 3 ) 

The skewness of a uniform distribution is zero, kurtosis is negative (independent of the 
bounds a and b). Obviously the distribution is symmetric as the values of the random variable 
are distributed uniformly. If the lower bound of the distribution is zero, a = 0 (which is 
sometimes assumed in practical applications), then  

 μ = 0,5 b, σ = 0,289 b, ω = 0, ε = - 2,96, V = 0,577  

Let us note that the coefficient of variation V in this case (when a = 0) is independent 
of b and its value is relatively high (V = 0,577). 
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3 SELECTED MODELS OF RANDOM VARIABLES 
 

3.1 Normal distribution 
Most frequently used models of continuous random variables that are applied in 

reliability analysis of civil structures are reviewed in Appendix 1 of this Chapter. From a 
practical and theoretical point of view the most important type of distribution of a continuous 
random variable is the normal (Laplace-Gauss) distribution. Symmetric normal distribution of 
a variable X is defined on an unlimited interval - ∞ < x < ∞ (which can be undesirable in some 
practical applications) and depends on two parameters only – on the mean μ and on the 
standard deviation σ. Symbolically it is often denoted as N(μ,σ). 

The normal distribution is frequently used as a theoretical model of various types of 
random variables describing some loads (self-weight), mechanical properties (strengths) and 
geometrical properties (outer dimensions). It is convenient for symmetric random variable 
with a relatively low variance (coefficient of variation V < 0,3). It fails when used for 
asymmetric variables with great variance and skewness ω > 0,5.  

The probability density function of a normal random variable X with a mean μ and 
standard deviation σ is given by the exponential expression  

 ϕ(x) =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
2

2
1exp

2
1

σ
μ

πσ
x  (3.1) 

Skewness ω and kurtosis ε are zero for a normal distribution.  
Tables for normal distributions are commonly available [12, 13] for probability 

density function ϕ(u) and distribution function Φ(u) of a standardized variable U, which is 
defined by a general transformation relation (used for any type of distribution) 

 U = 
σ

μ−X  (3.2) 

The standardized random variable U has a zero mean and variance (standard 
deviation) equal to one; symbolically it is often denoted as N(0, 1).  

The probability density function of the standardized random variable U is then given 
as a function of u  

 ϕ(u) = ⎟
⎠

⎞
⎜
⎝

⎛
−

2
exp

2
1 2u
π

 (3.3) 

The probability density function of a normal and lognormal distribution with a 
coefficient of skewness ω = 1,0 (described in the next section 3.2) of the standardized random 
variable u is shown in Figure 3.1. 

Note that the probability density function of the standardized normal distribution is 
plotted in Figure 3.1 for u in the interval <–3,+3>, which covers the standardised variable U 
with a high probability of 0,9973 (in engineering practice this interval is often called interval 
±3σ). 

 
3.2 Lognormal distribution 

Generally one-sided limited asymmetric lognormal distribution is defined on a limited 
interval x0 < x < ∞ or -∞ < x < x0. Therefore it eliminates one of the undesirable properties of 
the normal distribution. A lognormal distribution is generally dependent on three parameters. 
Commonly the moment parameters are used: mean μX, standard deviation σX and skewness 
ωx. If the skewness ωx is unknown or uncertain, the lower or upper bound x0 is used. 
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Random variable X has a lognormal (general three-parametric) distribution if the 
transformed random variable  

 Y = ln |X – x0| (3.4) 

has a normal distribution. In this relation x0 denotes the lower or upper limit of distribution of 
a variable X, which depends on skewness ωx. If the variable has a mean μx and standard 
deviation σx, then the lower or upper limit can be expressed as  

 x0 = μX - σX /c (3.5) 

where the coefficient c is given by the value of skewness ωX according to the relation  

 ωX = c3 + 3c3 (3.6) 
from which follows an explicit relation for c  

 ( ) ( ) 244 31
31

2
31

2 −

⎥⎦
⎤

⎢⎣
⎡ −+−++= ωωωω XXxXc  (3.7) 

Figure 3.1. Normal and lognormal distribution (skewness ω = 1,0) 
 
 
The dependence of the limit x0 on the coefficient c is obvious from Table 3.1 in which 

the lower bound u0= −1/c of the standardised random variable U=(X-μ X)/σX are given for 
selected values of the coefficient of skewness ωX ≥ 0. For ωX ≤ 0 values of u0 with an inverse 
sign (i.e. positive) are considered. A lognormal distribution with the skewness ωx = 0 becomes 
a normal distribution (u0= −1/c → ± ∞).  
 
Table 3.1. The lower limit u0= −1/c  for selected values of coefficient of skewness ωX ≥ 0.  

ωX 0 0,5 1,0 1,5 2,0 

u0= −1/c -∞ -6,05 -3,10 -2,14 -1,68 
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When creating a theoretical model it is therefore possible to consider, besides the 

mean μX and standard deviation σX, the skewness ωX or alternatively the lower or upper bound 
of distribution x0. Generally the former possibility is preferred because more credible 
information is available about the coefficient of skewness, which better characterises the 
overall distribution of the population (particularly of large populations) compared to the lower 
or upper bounds. 

The probability density function and distribution function of the general three 
parameter lognormal distribution may be obtained from well known normal distribution using 
modified (transformed) standardised variable u’ obtained from the original standardised 
random variable u = (x-μX)/σX as  

 
( )

)1ln(

1ln1ln

2

2

c

cc
c

u
u

+

++⎟
⎠

⎞
⎜
⎝

⎛
+

=′  (3.8) 

where (as above) u = (x-μX)/σX denotes the original standardised variable. The probability 
density function ϕLN,U(u’) and the distribution function ΦLN,U(u’) = ΦLN,X(x) of the lognormal 
distribution are then given as  

 ϕLN,U(u’) =
)1ln(1

)(
2c

c
u

u

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ϕ   (3.9) 

 ΦLN,X(x) = ΦLN,U(u’) = Φ(u) (3.10) 

where ϕ(u) and Φ(u) denote the probability density and distribution function of the 
standardised normal variable. 

A special case is the popular lognormal distribution with a lower bound at zero (x0 = 
0), which like the normal distribution, depends on two parameters only – the mean μX and the 
standard deviation σX (symbolically it is denoted LN(μ, σ)). In such a case it follows from 
equations (3.5) that the coefficient c is equal to the coefficient of variation VX. It further 
follows from equation (3.6) that the skewness ωX of the lognormal distribution with a lower 
bound at zero is given by the value of the coefficient of variation VX as 

 VV XXX
33 +=ω  (3.11) 

Thus the lognormal distribution with the lower bound at zero (x0 = 0) always has a 
positive skewness, which may have relatively high value (greater than 0,5); e.g. for the 
coefficient of variation equal to 0,30 a coefficient of skewness Vx = 0,927 obtained from 
relation (3.11). Applications of the lognormal distribution with the lower limit at zero (xo = 0) 
can thus lead to unrealistic theoretical models (usually underestimating the occurrence of 
negative and overestimating the occurrence of positive deviations from the mean), particularly 
for higher values of coefficient of variation VX. Although the occurrence of negative values 
can also be undesirable (unrealistic for most mechanical quantities), it is usually negligible 
from a practical point of view.  
 
Example 3.1. 

Reinforcement cover layer of a reinforced concrete cross-section X has a mean μ = 
25 mm and standard deviation σ = 10 mm. The probability density function ϕ(x) for a normal 
distribution and for a lognormal distribution with a lower limit at zero is shown in Figure 3.2. 
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It follows from Figure 3.2 that the normal distribution leads to occurrence of negative 
values of the reinforcement cover layer, which obviously does not correspond to reality. On 
the other hand, the lognormal distribution with lower limit at zero overestimates the 
occurrence of positive deviations of the cover layer, which may not be realistic either and can 
further lead to unfavourable influences on the strength of the cross-section. The 
overestimation of occurrence of extreme positive deviations corresponds to a high skewness ω 
= 1,36 of the lognormal distribution, which follows from equation (3.11). The available 
experimental data on the concrete cover indicate that the skewness of the distribution is 
around ω ≈ 0,5, in most cases ω < 1,0. 

 

 
Figure 3.2. Probability density function for the concrete cover 

 
 
The lognormal distribution is widely applied in the theory of reliability. It is used as a 

model for various types of random variables describing some loads (self-weight of some 
materials), mechanical properties (strengths) as well as geometrical data (inner and outer 
dimensions of cross-sections). It can be used for general asymmetric random variables with 
both positive and negative skewness. The lognormal distribution with lower limit at zero (x0 = 
0) is very often used for description of mechanical properties (strengths) of various materials 
(concrete, steel, masonry). 
 
3.3 Gamma distribution 

Another popular type of one-side limited distribution is the type III Pearson 
distribution. Its detailed description is e.g. in the book [13]. A special case of the type III 
Pearson distribution with lower limit at zero is the gamma distribution. The probability 
density function of this important distribution is dependent on two parameters only: on the 
mean μ and standard deviation σ. To simplify the notation two auxiliary parameters λ and 
k are often used 
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)(kΓ  is the gamma function of parameter k. For the moment parameters of the gamma 
distribution it holds that  

 V
k

kk 222,, =====
μ
σω

λ
σ

λ
μ  (3.13) 

The curve is bell shaped for k > 1, i.e. for skewness ω < 2 (in the inverse case it is a 
decreasing function of x). For k → ∞, the gamma distribution approaches the normal 
distribution with parameters μ and σ.  

The gamma distribution is applied similarly as the lognormal distribution with lower 
bound at zero. However, it varies from the lognormal distribution by its skewness, which is 
equal to twice the coefficient of variation (ω = 2V) and is thus lower than the skewness of 
lognormal distribution, which is more than 50% higher (according to equation (3.11) it is 

33 XXX VV +=ω ). That is the reason why the gamma distribution is more convenient for 
describing some geometrical quantities and variable action that do not have a great skewness.  

 
Figure 3.3. Histogram and theoretical models for concrete cover of reinforcement 

 
 
Example 3.2. 

A sample of the size n = 157 experimental results of concrete cover of reinforcement 
measurements has these characteristics: m = 26,8 mm, s = 11,1 mm and v = 0,42. It is a 
relatively large sample, which can be used for the assessed skewness (furthermore a long-term 
experience is available). A histogram of the obtained values and theoretical models of normal 
distribution, lognormal distribution with origin at zero, gamma distribution and beta 
distribution are shown in Figure 3.3, with help of which the appropriateness of the individual 
models can be considered.  
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According to Figure 3.3 it seems that the gamma distribution describes the histogram 
of obtained results better than the normal and lognormal distribution. But also the both-side 
limited beta distribution (described in the following Section 3.4) seems to be an appropriate 
model. However, to choose an appropriate theoretical model for describing variables of 
interest is a complicated task, which can be treated in theoretical way. Information about 
some methods of mathematical statistics (about the so-called goodness of fit tests) can be 
found in the textbook [4] and in specialised literature [12, 13]. In this book  
some practical aspects and procedures will be indicated only. 

3.4 Beta distribution 
An interesting type of distribution is the so-called beta distribution (also called 

Pearson‘s type I curve), which is defined on a both-side limited interval <a, b > (but this 
interval can be arbitrarily extended and the distribution then approaches the normal 
distribution). Generally it is dependent on four parameters and it is used mainly in those cases 
when it is evident that the domain of the random variable is limited on both sides (some 
actions and geometrical data, e.g. weight of a subway car, fire load intensity, concrete cover 
of reinforcement in a reinforced concrete cross-section). The principal difficulty in practical 
application is the need to estimate all the four parameters, for which credible data may not be 
available.  

The beta distribution is usually written in the form  

 1
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For the lower and upper limit of distribution it holds 

 a = μ - c g σ, b = μ + d g σ, 
cd
dcg 1++

=  (3.15) 

where g is an auxiliary parameter. From equations (3.15), relations for parameters c and d can 
be derived 

 ⎟
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For the moment parameters of the beta distribution it holds that 
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Note that skewness ω and kurtosis ε are dependent only on the parameters c and d 
(they are independent of the limits a and b). That is why the parameters c and d are called 
shape parameters. In practical applications the distribution is used for c > 1 and d > 1 
(otherwise the curve is J or U shaped), for c = d = 1 it becomes a uniform distribution, for c = 
d = 2 it is the so-called parabolic distribution on the interval <a, b >. When c = d, the curve is 
symmetric around the mean. When d → ∞, the curve becomes the type III Pearson 
distribution (see Section 3.3). If c = d → ∞, it approaches the normal distribution. Depending 
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on the shape parameters c and d the beta distribution thus covers various special types of 
distributions. The location of the distribution is given by parameters a and b. 

The beta distribution can be defined in various ways. If the parameters a, b, c and d 
are given, then the moment parameters μ, σ, ω and ε can be assess using equations (3.17) to 
(3.18). In practical applications however, two other combinations of input parameters are 
often applied: 

1. The input parameters are μ, σ, a and b. The remaining parameters c and d can 
be assessed from equations (3.16), the parameters ω and ε from equations (3.18). 
2. The input parameters are μ, σ, ω and one of the limits a (for ω > 0) or b (for ω 
< 0); the parameters b (or a), c and d can be assessed using equations (3.16) to (3.17). 
In practical applications the distribution with lower limit a = 0 is often used. It can be 

shown that in such a case the beta distribution is defined if 

 ω  ≤ 2V (3.19) 

where the coefficient of variation V = σ / μ. For ω = 2V the curve becomes the type III 
Pearson distribution (see Section 3.3). Therefore if the input parameters are the mean μ, 
standard deviation σ and skewness ω ≤ 2V, the beta distribution with the lower limit at zero (a 
= 0) is fully described. The upper limit b of the beta distribution with the lower limit at zero 
follows from the relation (3.15) 
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In equation (3.20) the parameters c and d are substituted by the following expressions 
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which follow from general equations (3.16) to (3.18) for a = 0.  
 
Example 3.3. 

Given the mean μ = 25 mm, standard deviation 10 mm (V = 0,40) and skewness 
ω = 0,5, assess the parameters of a beta distribution with the lower bound at zero (a = 0) for a 
reinforcement cover layer. Equation (3.19) is satisfied (0,5 < 2 × 0,4). From equations (3.21) 
and (3.22) it follows that  
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The upper bound of the distribution b follows from equation (3.20) that 
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The beta distribution having the assessed parameters is shown in Figure 3.4 together 
with a corresponding normal, lognormal and Gamma distribution with the lower bound at 
zero and the same mean μ and standard deviation σ.  

Figure 3.4 further shows that the normal distribution (skewness ω = 0) leads to the 
occurrence of negative values, which may not correspond to the real conditions for the 
reinforcement cover layer. According to equation (3.11) the lognormal distribution with lower 
limit at zero has skewness ω = 1,264, which does not correspond to experimental results and 
leads to an overestimation of the occurrence of positive deviations (which may further lead to 
unfavourable consequences in the reliability analysis of the reinforced concrete element).  

The gamma distribution has, according to equation (3.13), a skewness ω = 2V = 0,8, 
which is closer to the experimental value 0,5. The most convenient seems to be the beta 
distribution having the skewness ω = 0,5 corresponding exactly to the experimental results.  

 
 

Figure 3.4. Normal, Lognormal, Gamma and Beta distributions for the concrete cover layer of 
reinforcement in a reinforced concrete element 

 
It should be mentioned that mathematical statistics offers a number of “goodness of fit 

tests“ for evaluation of fitness of a distribution as a theoretical model for obtained 
experimental results (see for example documents [4, 12, 13] and a number recently developed 
ISO standards). The above discussion can therefore be supplemented by statistical tests. On 
the other hand it is essential to remark that goodness of fit tests very often fail and do not lead 
to an unambiguous result. In such a case the selection of a convenient model depends on the 
character of the basic variable, on available experience and on common experience.  

 
 
3.5 Gumbel and other distributions of extreme values 

The extreme values (maximal or minimal) in a population of a certain size are random 
variables and their distribution is very important in the theory of structural reliability. Three 
types of extreme values distribution denoted as types I, II and III are usually covered in the 
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specialised literature. Each of the types has two versions – one for the distribution of minimal 
values, the second for maximal values distribution. All these types of distribution have a 
simple exponential shape and are convenient to work with. We will describe in detail the type 
I extreme value distribution, which is commonly called the Gumbel distribution. Description 
of other types of distribution can be found in textbook [12,13] and in specialised literature 
[15, 16, 17, 18, 19]. 

The distribution function for the type I maximal values distribution (Gumbel 
distribution of maximum values) has the form 

 Φ(x) = exp(-exp(-c(x - xmod))) (3.23) 

It is a distribution defined on an infinite interval, which depends on two parameters: 
on mode xmod and parameter c > 0. By differentiating the distribution function we obtain the 
probability density function in the form 

 ϕ(x) = c exp(-c (x - xmod) - exp(-c(x - xmod))) (3.24) 

Both the parameters xmod, c of the Gumbel distribution can be assessed from the mean 
μ and standard deviation σ  

 
π
σμ 6577,0mod −=x  (3.25) 

 
σ

π
6

=c  (3.26) 

Skewness and kurtosis of the distribution are constant: ω = 1,14, ε = 2,4. 
An important characteristic of the Gumbel distribution is the simple transformation of 

the distribution function Φ(x) of the original distribution to the distribution function ΦN(x) 
describing the maxima of populations that are N times greater than the original population 
with mean μ and standard deviation σ. If the individual multiples of the original population 
are mutually independent, then it holds for the distribution function ΦN(x) 

 ΦN(x) = (Φ(x))N  (3.27) 
By substitution of equation (3.23) into equation (3.27) we obtain the distribution 

function ΦN(x) as 

 ΦN(x) = exp(-exp(-c(x - xmod – ln N/c))) (3.28) 

so the mean μN and standard deviation σN of maxima of populations that are N times greater 
than the original population are 

 μN = μ + ln N/c = μ + 0,78 ln N σ, σN = σ  (3.29) 

Thus the standard deviation σN of the greater population is equal to the standard 
deviation of the original population, σN = σ, but the mean μN is greater than the original value 
μ by 0.78 lnN/c.  

 
Example 3.4. 

One-year maxima of wind pressure are described by Gumbel distribution with a mean 
μ1 = 0,35 kN/m2, σ1 = 0,06 kN/m2. The corresponding parameters of the 50-year maximum 
value distribution, i.e. parameters μ50 and σ50, follow from equation (3.29) 

 μ50 = 0,35 + 0,78 × ln (50 × 0,06) = 0,53 kN/m2, σ50 = 0,06 kN/m2   
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Figure 3.5 shows both distributions of one-year and fifty-year maxima of wind 
pressure described by the Gumbel distribution.  

 

 
 

Figure 3.5. Distribution of maximum wind pressure over the periods of 1 year and 50 years. 
 
 
The distribution function of type I minimal values distribution (Gumbel distribution of 

minimum values) has the form  

 Φ(x) = 1 - exp(-exp(-c(xmod - x))) (3.30) 

This distribution is symmetrical to the distribution of maximal values given by 
equation (3.23). It is therefore also defined on an open interval and depends on two 
parameters: on mode xmod and parameter c > 0. By differentiating the distribution function we 
obtain the probability density function in the form 

 ϕ(x) = c exp(-c (xmod - x) - exp(-c (xmod - x))) (3.31) 

Both these parameters can be assessed from the mean μ and standard deviation σ  
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The probability density function of the minimum values is symmetrical to the shape of 
maximal values relative to mode xmod, as it is apparent from Figure 3.6. 
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Figure 3.6. The Gumbel distribution of the minimum and maximum values. 
 
In a similar way the type II distribution, the so-called Fréchet distribution, and type III 

distribution, the so-called Weibull distribution, are defined. All the three types of distribution 
complement each other with respect to the possible values of skewness ω. Each type covers a 
certain area of skewnesses, as indicated in Figure 3.7. 
 

 
Figure 3.7. Types of distribution of extreme values versus the skewness ω. 
 
 
The extreme values distributions of the type I and II are often used to describe random 

variables depending on the maximal values of populations (for example climatic actions). The 
type II is particularly convenient for variables with high skewness ω > 1,14 (for example for 
flood discharge that have ω ~ 2). The extreme values distribution of the type III is usually 
applied for random variables depending on the minimal values of populations (e.g. strength 
and other material properties) assuming that ω >− 1,14.  
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3.6 Function of random variables 
In general many variables entering reliability analysis of structures may be considered 

as a function of basic variables X = [X1, X2, ... , Xn]. For example resistance R or load effect E 
may be given as a function  

 Z = F(X) (3.34) 

where X = [X1, X2, ... , Xn] denotes a vector of basic variables. Then the resulting variable Z is 
a random variable and its characteristics may be derived from relevant characteristics of basic 
variables X = [X1, X2, ... , Xn]. Usually three moment parameters, the mean μ, standard 
deviation σ and skewness ω, are used for a first assessment of the resulting variable Z. 
Experience shows that using derived moment parameters (μ, σ and ω) three parameter 
lognormal distribution provides satisfactory approximation of Z. However, the software VaP 
[9] applies a more accurate approximation based on four moment parameters (μ, σ, ω and 
kurtosis ε). 

Appendix 2 of this Chapter provides approximate expressions for fundamental 
functions of two basic variables that can be used in assessment of failure probability in case of 
small number of basic variables.  

 
 

4 ESTIMATION OF FRACTILES 
 

4.1 Fractile of a theoretical model 
One of the most important keywords of the theory of structural reliability is the term 

fractile of a random variable X (or of its probability distribution), sometimes called also 
quantile. Appendix 3 to this Chapter provides a review of formulas for determining fractiles 
of most important theoretical models of continuous random variables.  

Let us recall the definition of the fractile. For a given probability p, the p-fractile xp 
denotes such a value of the random variable X, that values less than or equal to xp occur just 
with the probability p. If Φ(x) is distribution function of the random variable X, then it follows 
from equation (2.6) that the value Φ(xp) of the distribution function Φ(x) at the point xp is 
equal to the probability p  

 P(X ≤ xp) = Φ(xp) = p  (4.1) 

The same definition holds also for standardised random variable U (given by 
transformation equation (3.2)) when in equation (4.1) U is substituted for X and up is 
substituted for xp. Fractiles up of standardised random variables U are commonly available in 
tables. Figure 4.1 illustrates the definition of the fractile described by equation (4.1) for 
standardised random variable U; it shows distribution function Φ(u), probability density 
function ϕ(u), probability p (approximately equal to 0,05) and fractile up for normal 
standardised distribution U. 

In general fractile xp of the original random variable X may be calculated using tables 
for up available for standardised random variables U with a relevant type of distribution. It 
follows from transformation (3.2) that the fractile xp may be determined from the fractile of 
the  standardised random variable up (found in available tables) using relationship 

 xp = μ + upσ = μ (1 + up V)  (4.2) 

where μ denotes the mean, σ the standard deviation and V the coefficient of variation 
of the observed variable X. 

If the probability p < 0,5, then the value xp is called the lower fractile, for p > 0,5 the 
xp is called the upper fractile. Figure 4.2 shows the lower and upper fractiles up of a 
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standardized random variable U with normal distribution for probabilities p = 0,05 and 0,95, 
and thus denoted u0,05 and u0,95.  

The fractile corresponding to the probability p = 0,05, is usually applied for an 
assessment of the characteristic value of material properties (strength of concrete, yield point 
of steel, masonry strength). However, the design values of dominant variables are fractiles, 
which correspond to a lower probability (p ≅ 0,001), design values of variables which are not 
dominant are fractiles corresponding to a greater probability (p ≅ 0,10). 

 

Figure 4.1. Definition of the fractile for the standardised random variable U. 
 
 
The values up of the lower fractile of a standardized random variable U having normal 

distribution for selected probabilities p are given in Table 4.1. Considering the symmetry of 
the normal distribution, the values up of the upper fractile can be assessed from Table 4.1 by 
substituting of p by 1 - p and by changing the sign of values up (from negative to positive). 
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Detailed tables can be found e.g. in books [12, 13], in the International Standard ISO 12491 
[4] and in specialised literature [18, 19, 20]. 

For a standardized random variable with a general three-parametric lognormal 
distribution the value up of the standardized random variable is dependent on skewness ω. The 
values up for selected skewnesses ω and probabilities p are given in Table 4.2. 

 
Table 4.1. Fractile up of a standardized random variable with normal distribution 
p 10-7 10-6 10-5 10-4 0,001 0,010 0,050 0,100 0,200 0,500 

up -5,199 -4,753 -4,265 -3,719 -3,091 -2,327 -1,645 -1,282 -0,841 0,000 

 
 

 
Figure 4.2. The lower and upper fractiles of a standardized random variable U having normal 

distribution 
 
 
In the case of a lognormal distribution with lower limit at zero, which is described in 

section 3.2, it is possible to calculate the fractile from the value of fractile of a standardized 
random variable with normal distribution using the relation 

 ( ))1ln(exp
1

2
,2

Vu
V

x pnormp +
+

=
μ  (4.3) 

where unorm,p is the fractile of a standardized random variable with normal distribution, μ is 
the mean and V the coefficient of variation of the variable X. An approximation of relation 
(4.3) is often applied in the form 

 xp ≅ μ exp (unorm,p × V) (4.4) 

whose accuracy is fully satisfactory for the coefficient of variations V < 0,2, but it is 
commonly used for greater V as well. 
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Table 4.2. Fractile up of a standardized random variable having lognormal distribution  

Probability p  

ω 10-4 10-3 0,01 0,05 0,10 0,20 0,50 0,80 0,90 0,95 0,99 1-10-3 1-10-4 

-2,0 -9,52 -6,24 -3,52 -1,89 -1,24 -0,61 0,24 0,77 0,97 1,89 1,28 1,42 1,49 

-1,5 -7,97 -5,51 -3,31 -1,89 -1,29 -0,68 0,20 0,81 1,04 1,21 1,45 1,65 1,77 

-1,0 -6,40 -4,70 -3,03 -1,85 -1,32 -0,74 0,15 0,84 1,13 1,34 1,68 1,99 2,19 

-0,5 -4,94 -3,86 -2,70 -1,77 -1,32 -0,80 0,08 0,85 1,21 1,49 1,98 2,46 2,81 

0,0 -3,72 -3,09 -2,33 -1,65 -1,28 -0,84 0,00 0,84 1,28 1,65 2,33 3,09 3,72 

0,5 -2,81 -2,46 -1,98 -1,49 -1,21 -0,85 -0,08 0,80 1,32 1,77 2,70 3,86 4,94 

1,0 -2,19 -1,99 -1,68 -1,34 -1,13 -0,84 -0,15 0.74 1,32 1,85 3,03 4,70 6,40 

1,5 -1,77 -1,65 -1,45 -1,21 -1,04 -0,81 -0,20 0,68 1,29 1,89 3,31 5,51 7,97 

2,0 -1,49 -1,42 -1,28 -1,89 -0,97 -0,77 -0,24 0,61 1,24 1,89 3,52 6,24 9,52 

 
 

Example 4.1.  
Let us assess the fractile xp of a normal and lognormal distribution with lower limit at 

zero for p = 0,001; 0,01; 0,05 and 0,10, if V = 0,3. We know that the lognormal distribution 
with lower limit at zero has, in this case, a positive skewness ω = 0,927 (according to equation 
(3.11)), which needs to be known for interpolation in Table 4.2. The resultant values xp are 
given in the following table in the form of dimensionless coefficients xp/μ (expressing the 
ratio of the fractile to the mean), which were for normal and for lognormal distribution 
assessed by different ways.  

 
Table of coefficients xp/μ. 

Probability p  

Coefficient xp/μ for 0,001 0,010 0,050 0,100 

normal distribution, equation (4.2) and Table 4.1 0,073 0,302 0,506 0,615 

lognormal distribution, equation (4.2) and Table 4.2 0,385 0,483 0,591 0,658 

lognormal distribution, equation (4.3) and Table 4.1 0,387 0,484 0,591 0,657 

lognormal distribution, equation (4.4) and Table 4.1 0,396 0,496 0,610 0,681 

 
Table of coefficients xp/μ shows the expected difference between the fractiles of 

normal and of lognormal distributions. The lower fractile of normal distribution is 
significantly lower than the corresponding fractile of lognormal distribution particularly for 
small probabilities p. The table also shows that the approximate formula (4.4) provides 
satisfactory results for computation of fractile of lognormal distribution (the error will 
decrease with decreasing coefficient of variation V).  

The fractile of gamma distribution can be calculated from the available tables for type 
III Pearson distribution [12, 13]. To calculate the fractile of beta distribution, the available 
tables of incomplete beta function may be used or it can be assessed by integration of 
probability density function according to definition (4.1). However, when it is needed (and 
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neither appropriate tables nor software product are available), the fractile of beta distribution, 
which is bell shaped (for shape parameters it holds that c > 2 and d > 2), may be assessed 
approximately from equation (4.2) using table values of up for a standardized lognormal 
distribution, having the same skewness ω as the beta distribution. Analogical procedure may 
be used for other types of distribution, too.  

The fractile xp can be easily assessed for Gumbel distribution. From equation (3.23) 
and definition (4.1) follows an explicit relation for xp directly dependent on the probability p  

 σμ )))ln(ln(78,045,0())ln(ln(1
mod pp

c
xxp −+−≅−−=  (4.5) 

where mode xmod and parameter c are substituted by relations (3.25) and (3.26).  
 
 

Example 4.2. 
Let us determine the upper fractile of wind pressure from Example 3.4 described by 

Gumbel distribution when probability p = 0,98 is considered. It is known from Example 3.5 
that for the one-year maximum μ1 = 0,35 kN/m2, σ1 = 0,06 kN/m2. The fractile x0,98 for such 
parameters follows from equation (4.5) 

 x0,98 = 0,35 – (0,45 + 0,78 × ln(-ln(0,98))) × 0,06 = 0,51 kN/m2   

The corresponding fractile of the maximum for a period of 50 years (as shown in 
Example 3.4 that μ50 = 0,53 kN/m2, σ50 = 0,06 kN/m2) is  

 x0,98 = 0,53 – (0,45 + 0,78 × ln(-ln(0,98))) × 0,06 = 0,69 kN/m2  

Simple mathematical procedures, including the computation of fractile, are some of 
the reasons of the wide popularity of Gumbel, distribution which is frequently used for 
random variables describing climatic and other variable actions that are defined by maximal 
values for a given period (e.g. during one year).  

 
However, theoretical models are not always known in practical applications. In civil 

engineering, the fractile of a random variable (e.g. strength of a new or unknown material) has 
to be assessed from a limited sample, the size n of which may be very small (sometimes less 
than 10). Furthermore, considered random variables may have a high variability (the 
coefficient of variation is sometimes greater than 0,30). Assessment of the fractile of a 
population from a sample is then a serious problem, which is in mathematical statistics solved 
by various methods of estimation theory. In the following three basic methods are shortly 
described: the coverage method, the prediction method and the Bayesian method for 
estimation of the population fractile.  

 
4.2 Coverage method of fractile estimation 

The keyword of the coverage method for the fractile estimation from a sample of a 
limited size n is the confidence γ, i.e. the probability (usually 0,75, 0,90 or 0,95) that the 
estimated value covers the population fractile (that is why the method is called coverage 
method). The estimator xp,cover of the lower fractile xp is determined by the coverage method in 
such a way that  

 P(xp,cover < xp) = γ  (4.6) 
Thus, the estimator xp,cover is lower (on the safe side of the lower fractile) than the 

unknown fractile xp with the probability (confidence) γ.  
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In the following summary practical formulas are given without being derived, 
assuming that the population has a general three-parameter distribution characterized by 
skewness ω, known from previous experience. In addition it is assumed that the mean μ of the 
population is never known in advance and the estimation is based by the average m obtained 
from a sample. The standard deviation σ of the population is assumed to be either known (and 
then it is used) or unknown (and then the sample standard deviation s or the coefficient of 
variation V is used instead of σ).  

If the standard deviation σ of the population is known from previous experience, the 
estimator xp,cover of the lower p-fractile is given as 

 xp,cover = m − κp σ  (4.7) 

If the standard deviation of the population σ is unknown, then the sample standard 
deviation s is considered  

 xp,cover = m − kp s (4.8) 

Coefficients of estimation κp = κ (ω, p, γ, n) and kp = k (ω, p, γ, n) depend on 
skewness ω, on probability p corresponding to the fractile xp that is estimated, on confidence γ 
and on the size n of the population. The knowledge of confidence γ that the estimator xp,cover 
will be on the safe side of the real value is the greatest advantage of the classic coverage 
method. In documents [1, 2] the confidence γ is recommended by the value 0,75. In the cases 
of increased reliability demands when a detailed reliability analysis is required, a higher value 
of confidence, say of 0,95, may be more appropriate [4].  

 
4.3 Prediction method of fractile estimation 

According to the prediction method [4] the lower p-fractile xp is estimated by the so-
called prediction limit xp,pred for which it holds that a new value xn+1 randomly drawn from the 
population will be lower than the estimator xp,pred only with the probability p, i.e. it holds that 

 P(xn+1 < xp,pred) = p  (4.9) 
It can be shown that for growing n the estimator xp,pred defined in this way is 

asymptotically approaching the unknown fractile xp. It can be also shown that the estimator 
xp,pred corresponds approximately to the estimator obtained by the coverage method xp,cover for 
confidence γ = 0,75 [4].  

If the standard deviation σ of the population is known, then the lower p-fractile is 
estimated by the value xp,pred according to the relation 

 xp,pred = m + up (1/n + 1)1/2 σ  (4.10) 

where up = u(ω, p) is the p-fractile of a standardized lognormal distribution having the 
skewness ω. If the distribution of the variable X is normal then up is the p-fractile of 
standardised normal distribution. 

If, however, the standard deviation of population is unknown, then the sample 
standard deviation s must be considered instead of σ  
 xp,pred = m + tp (1/n + 1)1/2 s  (4.11) 

where tp = t(ω, p, ν) is the p-fractile of the generalized Student′s t-distribution for ν = n –1 
degrees of freedom, which has a skewness ω (information about Student‘s distribution and 
about the number of degrees of freedom may be obtained from the textbook [12,13] and from 
other specialised sources [18, 19]). If the distribution of the variable X is normal, then up is the 
p-fractile of standardised normal distribution Student′s t-distribution for ν = n –1 degrees of 
freedom. 
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4.4 Coefficients of the coverage and prediction methods 

The coverage and prediction methods represent two basic procedures of estimation of 
the population‘s fractile from the available sample of a limited size n. If the standard 
deviation of the population σ is known, then equations (4.7) and (4.10) are applied in which 
two analogical coefficients κp and −up(1/n + 1)1/2 appear. Both of these coefficients depend on 
the sample size n, coefficient κp of the coverage method depends furthermore on the 
confidence γ. Table 4.3 shows the coefficients κp and −up(1/n + 1)1/2 for p = 0,05 and selected 
values of n and γ when normal distribution of the population is assumed. 

 
Table 4.3. Coefficients κp and −up(1/n + 1)1/2 from equations (4.7) and (4.10) for p = 0,05 and 
normal distribution of the population (when σ is known). 

 Sample size n 
Coefficient 3 4 5 6 8 10 20 30 ∞ 
 γ = 0,75 2,03 1,98 1,95 1,92 1,88 1,86 1,79 1,77 1,64 
κp γ = 0,90 2,39 2,29 2,22 2,17 2,10 2,05 1,93 1,88 1,64 
 γ = 0,95 2,60 2,47 2,38 2,32 2,23 2,17 2,01 1,95 1,64 
−up(1/n+1)1/2 1,89 1,83 1,80 1,77 1,74 1,72 1,68 1,67 1,64 

 

It is evident from Table 4.3 that with the growing sample size n both the coefficients 
approach the value 1,64, which holds for a theoretical model of the normal distribution (see 
Table 4.1). The coefficient κp of the coverage method increases with increasing confidence γ. 
Note that for confidence γ = 0,75 it holds that κp ≅ −up(1/n + 1)1/2. Thus, for γ = 0,75 the 
coverage method leads approximately to the same estimator as the prediction method, xp,cover ≅ 
xp,pred (for greater confidence γ > 0,75 the xp,cover < xp,pred).  

If the standard deviation of the population σ is unknown, equations (4.8) and (4.11) 
are applied in which two analogical coefficients kp and −tp(1/n + 1)1/2 appear. Both of these 
coefficients depend again on the sample size n, coefficient kp of the coverage method depends 
furthermore on the confidence γ. Table 4.4 and Figure 4.3 show the values of coefficients kp 
and −tp(1/n + 1)1/2 for p = 0,05 and selected values of n and γ when normal distribution of the 
population is assumed. 

 
Table 4.4. Coefficients kp and −tp(1/n + 1)1/2 from equations (4.8) and (4.11) for p = 0,05 and 
normal distribution of the population (when σ is unknown). 

Coefficient Sample size n 
 3 4 5 6 8 10 20 30 ∞ 
 γ = 0,75 3,15 2,68 2,46 2,34 2,19 2,10 1,93 1,87 1,64 
kp γ = 0,90 5,31 3,96 3,40 3,09 2,75 2,57 2,21 2,08 1,64 
 γ = 0,95 7,66 5,14 4,20 3,71 3,19 2,91 2,40 2,22 1,64 
− tp(1/n+1)1/2 3,37 2,63 2,33 2,18 2,00 1,92 1,76 1,73 1,64 

 
It is obvious from Table 4.4 and Figure 4.3 that with increasing sample size n both the 

coefficients kp and −tp(1/n + 1)1/2 approach the value 1,64, which is valid for a theoretical 
model of the normal distribution (see Table 4.1). In case of the coverage method, the 
coefficient kp increases with increasing confidence γ and the relevant estimators xp,cover of the 
lower fractile are decreases (on the safe side). Note, that as in the case of known standard 
deviation σ both coefficients are approximately equal, kp ≅ −tp(1/n + 1)1/2 and for confidence γ 
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= 0,75 the coverage method leads to approximately the same estimator, xp,cover ≅ xp,pred, as the 
prediction method.  
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Figure 4.3. Coefficients kp and -tp(1/n + 1)1/2 for p = 0,05 and normal distribution of the 
population (when σ is unknown). 

 
Also the skewness (asymmetry) of the population ω may affect significantly the 

estimator of the population‘s fractile. Tables 4.5 and 4.6 show the coefficients kp from 
equation (4.8) for three value of the skewness ω = −1,0, 0,0 and 1,0, probability p = 0,05 and 
confidence γ = 0,75 (Table 4.5) and γ = 0,95 (Table 4.6). Values of the coefficients from 
Table 4.6 are shown in Figure 4.4.  
 
Table 4.5. Coefficient kp from equation (4.8) for p = 0,05, γ = 0,75 and lognormal distribution 
having skewness ω (when σ is not known). 

 Sample size n 
Skewness 3 4 5 6 8 10 20 30 ∞ 
ω = −1,00 4,31 3,58 3,22 3,00 2,76 2,63 2,33 2,23 1,85 
ω =  0,00 3,15 2,68 2,46 2,34 2,19 2,10 1,93 1,87 1,64 
ω  =  1,00 2,46 2,12 1,95 1,86 1,75 1,68 1,56 1,51 1,34 

 
Table 4.6. Coefficient kp from equation (4.8) for p = 0,05, γ = 0,95 and lognormal distribution 
having the skewness ω (when σ is not known). 

 Sample size n 
Skewness 3 4 5 6 8 10 20 30 � 
ω = −1,00 10,9 7,00 5,83 5,03 4,32 3,73 3,05 2,79 1,85 
ω =  0,00 7,66 5,14 4,20 3,71 3,19 2,91 2,40 2,22 1,64 
ω =  1,00 5,88 3,91 3,18 2,82 2,44 2,25 1,88 1,77 1,34 

 
It is evident from Tables 4.5 and 4.6 that as the sample size n increases, the 

coefficients kp approach the values of up, which are valid for theoretical model of lognormal 
distribution (see Table 4.2). Thus, the influence of the skewness ω does not disappear when n 
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→ ∞, and it is especially significant for small samples and greater confidence γ = 0,95 (see 
Figure 4.4). 

 
  10 

 5 

 0 
 n 

1,64 

0                            5                             10                           15                          20 

 ω = −1,00 

 ω = 0,00 

 ω = +1,00 

 kp 

 

Figure 4.4. Coefficient kp for p = 0,05 and confidence γ = 0,95 (when σ is unknown).  
 
A similar dependence on skewness may be observed in the case of the generalized 

Student‘s t-distribution for which the fractiles tp are given in Table 4.7. These values tp are 
applied in the prediction method using formula (4.11) and further in the Bayes‘ method. That 
is why Table 4.7 gives directly the values of fractiles tp depending on the number of degrees 
of freedom ν. Similarly as in Tables 4.5 and 4.6 the probability p = 0,05 and three skewnesses 
ω = −1,0; 0,0 and 1,0 are considered.  

 
Table 4.7. Coefficient −tp from equation (4.11) for p = 0,05 and lognormal distribution with 
skewness ω (when σ is unknown). 

 Coefficient − tp for ν = n − 1 degrees of freedom 
Skewness 3 4 5 6 8 10 20 30 ∞ 
ω = −1,00 2,65 2,40 2,27 2,19 2,19 2,04 1,94 1,91 1,85 
ω =  0,00 2,35 2,13 2,02 1,94 1,86 1,81 1,72 1,70 1,64 
ω =  1,00 1,92 1,74 1,64 1,59 1,52 1,48 1,41 1,38 1,34 

 
It follows from Table 4.7 that as the size of the sample n increases, the values of tp 

approach the theoretical values of up, which are valid for a model of lognormal distribution 
with the appropriate skewness and are given in Table 4.2. Therefore, the influence of the 
skewness again (as in the case of kp) does not disappear for n → ∞, but it is especially 
significant for small samples (it increases with decreasing sample size n).  

 
Example 4.3.  

A sample of the size n = 5 measurements of strength of concrete has the mean m = 
29,2 MPa and the standard deviation s = 4,6 MPa. We assume that the population is normal 
and that its standard deviation σ is unknown. The characteristic strength fck = xp, for p = 0,05 
is firstly assessed by the coverage method. If the confidence is γ = 0,75, then it follows from 
equation (4.8) and Table 4.4 that 
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 xp,cover = 29,2 – 2,46 × 4,6 = 17,9 MPa  

If the higher confidence γ = 0,95 is required, then 

 xp,cover = 29,2 – 4,20 × 4,6 = 9,9 MPa  

If the prediction method is used, then it follows from equation (4.11) and Table 4.4 that  

 xp,pred = 29,2 – 2,33 × 4,6 = 18,5 MPa  
The characteristic strength obtained by the prediction method is only a little greater 

than the value according to the coverage method with confidence γ = 0,75. However, if a 
higher confidence γ = 0,95 is required, then the prediction method leads to a value which is 
almost twice greater than the value obtained by the coverage method.  

If the sample comes from a population with lognormal distribution and a positive 
skewness ω = 1, then the coverage method with the confidence γ = 0,75 (Table 4.5) gives an 
estimator 

 xp,cover = 29,2 – 1,95 × 4,6 = 20,2 MPa  
which is a value by 13% greater than when the skewness is zero.  

Similarly it follows for the prediction method from equation (4.11) and Table 4.7 that  

 MPa4,206,41
5
174,12,29pred, =×+×−=px   

where the value tp = -1,74 is given in Table 4.7 for ω = 1,0 and ν = 5 - 1= 4. The resulting 
strength is in this case by 10% greater than the value, which corresponds to the normal 
distribution (ω = 0).  

 
4.5 Bayes' method of fractile estimation 

If previous experience is available for a random variable (e.g. in the case of a long 
term production) it is possible to use so-called Bayes` method, which generally follows the 
idea of updating of probabilities described in section 2.5. The Bayes‘ method of fractile 
estimation is described here without deriving any important relations. More detailed 
description is given in documents ISO [3, 4] and other specialised literature [12, 13].  

Assume that a sample of size n with an average m and standard deviation s is 
available. Note that degrees of freedom ν = n − 1. Besides an average m‘ and sample standard 
deviation s' assessed from an unknown sample (of an unknown size n‘ and degrees of freedom 
ν‘) are available from previous experience. It is, however, assumed that both the samples 
come from the same population having the mean μ and the standard deviation σ. If this 
important assumption is valid, then the two samples may be combined. This could be a simple 
task if the individual values of the previous set were known, but that is not the case. However, 
the Bayes` method must be used.  

Parameters of the combined sample are generally given by relations [3, 4] 

 n'' = n + n'   

 ν'' = ν + ν' –1 if n' ≥ 1, ν'' = ν + ν' if n' = 0  (4.12) 

 m'' = (mn + m'n') / n''   

 s'' 2 = (ν s2 + ν's' 2 + nm2 + n'm' 2 – n''m'' 2) / ν''   
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The unknown sample size n' may be assessed using the relations for coefficients of 
variation of the mean and standard deviation V(μ) and V(σ), (parameters μ and σ are 
considered as random variables in the Bayes‘ concept) for which it holds [3, 4]  

 n' = [s' / (m' V(μ))]2, ν' = 1 / (2 V(σ)2) (4.13) 

Both the unknown variables n' and ν' may be assessed independently (generally ν' ≠ n' 
- 1), depending on previous experience with the degree of uncertainty of estimator of the 
mean μ and standard deviation σ of the population.  

The next step of the procedure applies the prediction method of fractile estimation. 
The Bayes‘ estimator xp,Bayes of the fractile is given by relationship similar to equation (4.11) 
for prediction estimator, assuming that the standard deviation σ of the population is not 
known 
 '''''' sntmx pp

2/1)1/1( +′′+=Bayes,  (4.14) 

where ),,( νω '''''' ptt pp =  is a fractile of the generalised Student‘s t-distribution having an 
appropriate skewness ω for ν'' degrees of freedom (that is generally different from the value 
n''− 1).  

If the Bayes‘ method is applied for an assessment of material strength, the advantage 
may be taken of the fact that the long-term variability is constant. Then the uncertainty of an 
assessment of σ and the value v(σ) are relatively small, variables ν' assessed according to 
equation (4.13) and ν'' assessed according to equation (4.12) are relatively high. This factor 
may lead to a favourable decrease of the value t ''

p  and to augmentation of the estimator of the 
lower fractile of xp according to equation (4.14). On the other hand, uncertainties in 
assessment of the mean μ and the variable v(μ) are usually great and previous information 
may not affect significantly the resulting values n'' and m''.  

If no previous information is available, then n' = ν' = 0 and the resulting characteristics 
m'', n'', s'', ν'' equal the sample characteristics m, n, s, ν. In this case the Bayes‘ method is 
reduced to the prediction method and equation (4.14) becomes equation (4.11); if σ is known 
equation (4.10) is used. This particular form of the Bayes‘ method, when no previous 
information is available, is considered in Eurocode EN 1990 [1] and international standards 
ISO [2, 3].  

 
Example 4.4.  

If previous experience was available for Example 4.3, the Bayes‘ method could be 
used. Suppose that the information is m‘ = 30,1 MPa, V(μ) = 0,50, s‘ = 4,4 MPa, V(σ) = 0,28. 
It follows from equation (4.13) that 

 6
28,02

1,1
50,0
1

1,30
4,4

2

2

≈
×

=<⎟
⎠

⎞
⎜
⎝

⎛= '' νn   

Further on these values are thus considered: n' = 0 and ν' = 6. Because ν = n – 1 = 4, it 
follows from equation (4.12) 

 n'' = 5, ν'' = 10, m'' = 29,2 MPa, s'' = 4,5 MPa. 

From equation (4.14) the fractile estimate follows as 

 MPa3,205,41
5
181,12,29, =×+×−=Bayespx   
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where the value 1,81=t p
''  is given in Table 4.7 for ω = 0 and ν'' = 10. The resulting strength is 

thus greater (by 10%) than the value obtained by the prediction method.  
If the population has lognormal distribution with skewness ω = 1, then it follows from 

equation (4.14) considering the value 48,1=t p
''  given in Table 4.7 that 

 MPa9,215,41
5
148,12,29, =×+×−=Bayespx   

which is a value by 8% greater than the Bayes‘ estimator for ω = 0.  
 
Examples 4.3 and 4.4 clearly showed that the estimator of characteristic strength 

(fractile with probability p = 0,05) assessed from one sample may be expected within a broad 
range (in Examples 4.3 and 4.4 from 9,9 MPa to 21,9 MPa), depending on the applied 
method, required confidence, previous information and on assumptions concerning the 
population. Besides the alternatives considered in Examples 4.3 and 4.4, knowledge of the 
standard deviation σ of the population and assumption of the negative skewness (in the case 
of some materials of high strength) may be applied as well.  

Even more significant differences in the resulting values may occur when design 
values of strength are being estimated, i.e. when fractiles corresponding to a small probability 
(p ≅ 0,001) are considered. However, a direct estimation of such fractiles from a limited 
sample of the population is recommended only in such cases when a sufficient amount of 
information on the relevant random variable is available. In such cases, it is necessary to 
proceed carefully and, if possible, in co-operation with experts in the field of mathematical 
statistics. 

  
4.6 Estimation of fractiles according to Eurocodes 

Eurocode EN 1990 [1] gives in tables the coefficients for estimation of a fractile of a 
random variable with normal distribution (asymmetric distributions thus are not considered 
for the fractile estimation) from a sample for three probabilities p = 0,05 (for characteristic 
value xk), p = 0,001 (for design value xd of the dominant variable) and for p = 0,10 (for design 
value xd of the non-dominating variable). As already mentioned above, the characteristic 
values xk and design values xd are defined as fractiles xp, which correspond to a given 
probability p (application of these variables in structural design is explained in the following 
chapters).  

For characteristic values of material properties a fractile corresponding to probability p 
= 0,05 is usually considered (however, for variables which describe variable loads the 
probability p is usually less than that), i.e. it holds 

 P(X < xk) = 0,05 (4.15) 

For design values xd of dominating variables it holds approximately that p = 0,001 (or 
another value close to this one), i.e. it holds 

 P(X < xd) = 0,001  (4.16) 

Finally, for design values xd of non-dominant variables it holds approximately that p = 
0,1, i.e. it holds that  

 P(X < xd) = 0,1 (4.17) 

A more detailed description of the dominating and non-dominating variables is given 
in Handbook 1. 
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The following Tables 4.8 and 4.10, which give the required coefficients for estimation 
of variables xk and xd according to equations (4.15) to (4.17), are adopted from the document 
[1] in its original version, even though the first Table 4.8 partially overlaps with the precedent 
Tables 4.3 and 4.4. Tables 4.8 and 4.9 are taken from the final version of EN 1990 [1]. Let us 
remark that all the coefficients in [1] are denoted by the symbol kn, which is used also in the 
following tables.  

 
Table 4.8. Coefficients kn for a 5% characteristic value (see Tables 4.4 and 4.3). 

 Sample size n 
Coefficient 1 2 3 4 5 6 8 10 20 30 ∞ 
− up(1/n+1)1/2, σ known 2,31 2,01 1,89 1,83 1,80 1,77 1,74 1,72 1,68 1,67 1,64 
− tp(1/n+1)1/2, σ unknown - - 3,37 2,63 2,33 2,18 2,00 1,92 1,76 1,73 1,64 
 
Table 4.9. Coefficients kn for a design value xd of a dominating variable, P(X < xd) = 0,001.  
 Sample size n 

Coefficient 1 2 3 4 5 6 8 10 20 30 ∞ 
− up(1/n+1)1/2, σ known 4,36 3,77 3,56 3,44 3,37 3,33 3,27 3,23 3,16 3,13 3,09 
− tp(1/n+1)1/2, σ unknown - - - 11,4 7,85 6,36 5,07 4,51 3,64 3,44 3,09 
 
Table 4.10. Coefficients kn for a design value xd of a non-dominating variable, P(X < xd) = 0,1. 

 Sample size n 
Coefficient 1 2 3 4 5 6 8 10 20 30 ∞ 
− up(1/n+1)1/2, σ known 1,81 1,57 1,48 1,43 1,40 1,38 1,36 1,34 1,31 1,30 1,28 
− tp(1/n+1)1/2, σ unknown - 3,77 2,18 1,83 1,68 1,56 1,51 1,45 1,36 1,33 1,28 

 
The assumption concerning knowledge of the standard deviation σ is replaced 

(inaccurately) in the document by the assumption that the coefficient of variation V is known. 
The original version of Table 4.9 [1] gives for the sample size of ∞ a wrong value of 3,04 for 
the coefficients (correct is 3,09). Let us also note that when knowledge of the standard 
deviation σ is assumed, Tables 4.8 to 4.10 give values of coefficients already for the sample 
size n = 1. Application of these values is, however, associated with significant statistical 
uncertainties and therefore a minimum sample size n = 3 is recommended here. Note, that 
Table 4.10 (for 0,1 fractile) is included only in the prestandard ENV 1991-1 and not in the 
final document EN 1990 [1].  
 Statistical methods for determining the characteristic and design values of resistance 
variables are provided in Annex D “Design assisted by testing” of EN 1990 [1]. Relevant 
basic variables describing structural resistance are described by lognormal distribution. The 
whole procedure is described in detail in the Annex D. Attached MATHCAD sheet 
“Mod_est.mcd” can be used to evaluate experimental data using the whole procedure. It is 
provided with explanatory notes and needs no additional information.  

In order to simplify computational procedure the assessment coefficients given in 
Tables 4.8 and 4.9 are in the attached MATHCAD sheet “Mod_est.mcd” expressed using 
built-in distribution function of normal and Student t- distribution. In accordance with the 
principles of Annex D in [1] single variable and model representation of a resistance variable 
R are distinguished. The results shown in the attached sheet indicates that both approaches 
lead to similar results.  
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Appendix 1 - Probabilistic models of basic variables 

Distribution, 
notation 

Probability density function Domain 
of X 

Parameters Mean 
μ 

Standard 
deviation σ 

Skewness 
ω 

Rectangular 
R(a,b) 1/(b − a) a ≤ x ≤ b a 

b > a (a + b)/2 (b − a)/√12 0 

Normal 
N(μ,σ) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

σ
μ−

−
πσ

2

2
1exp

2
1 x  

−∞ ≤ x ≤ 
∞ 

μ 
σ 

μ  σ 0 

Lognormal, 
general 

LN(μ,σ,ω) 
LN(μ,σ,x0) 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +−
−

+−
))1ln(2(

1||||
lnexp

2)1ln(||

1 2

2
2

0

2
0

c
ccxx

cxx σπ

x0 ≤ x < ∞ 
pro ω > 0, 
−∞ <x≤x0 
pro ω < 0 

x0 = μ − cσ 
σ 
c 

x0 + cσ σ 3c+c3 

Lognormal, 
zero origin 
LN(μ,σ) ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

+
))1ln(2(1lnexp

2)1ln(
1 2

2
2

2
VVx

Vx μπ
 

0 ≤ x < ∞ μ 
V =σ /μ 

μ V μ 3V+V3 

Gamma 
Gam(μ,σ) λk xk-1 exp(-λx) / Γ(k) 0 ≤ x < ∞ λ = μ /σ2 

k = (μ /σ)2 
k/λ √k/λ 2 /√k 

Beta, 
general 

Beta(μ,σ,ω,b) 
Beta(μ,σ,a,b) 

1

11

))(,(
)()(

−+

−−

−
−−

dc

dc

abdcB
xbax  

a ≤ x ≤ b a 
b >a 
c ≥1 
d ≥1 dc

cab
a

+
−

+

+
 )  ( dgcg

ab
+
−  )  ( , 

cd
dcg 1++

=  

2
)  (2

++
−

dc
cdg , 

cd
dcg 1++

=

 
Beta, 

zero origin 
Beta(μ,σ,ω) 
Beta(μ,σ,b) 

1

11

),(
)()(

−+

−− −
dc

dc

bdcB
xbx  

0 ≤ x ≤ b 
b >0 
c ≥1 
d ≥1 

dc
cb

+
  

dgcg
b
+
 , 

cd
dcg 1++

=  

2
)  (2

++
−

dc
cdg , 

cd
dcg 1++

=

 
Gumbel 

Gum(μ,σ) c exp(−c(x−xmod) − exp(− c(x − xmod))) 
−∞ ≤ x < 

∞ 
xmod = μ − 

0,577√6σ /π
c = π /(√6σ)

xmod + 
0,577/c 

π /(√6c) 1,14 
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Appendix 2 - Statistical parameters of functions of random variables 

 

Function Z The mean μZ Standard deviation σZ Skewness ωZ 

aX+b aμX + b Xa σ||   ωX  pro ω > 0, - ωX   pro ω < 0 

X2 *) 22
XX σμ +  ( ) 2/122 XXXXX ωσμμσ +  ( )

3

33 38

Z

XXXX V
σ
ωσμ +

 

X
1  *) 

X

XXX VV
μ

α321 −+
 ( )

X

XXX VV
μ

ω
2/132 2−

 33

346

ZX

XXX VV
σμ

ω−
 

aX + bY + c aμX + bμY + c ( ) 2/12222
YX ba σσ +  

3

3333

Z

YYXX ba
σ

ωσωσ +
 

X + Y μX + μY ( ) 2/122
YX σσ +  

3

33

Z

YYXX

σ
ωσωσ +

 

X – Y μX − μY ( ) 2/122
YX σσ +  

3

33

Z

YYXX

σ
ωσωσ −

 

X Y      *) μX μY μX μY ( ) 2/12222
YXYX VVVV ++  ( )

3

223333 6

Z

YXYYXXYX VVVV
σ

ωωμμ ++
 

Y
X  *) ( )

Y

YYYX VV
μ

ωμ 321 −+  
( )

Y

YYYXX VVV
μ

ωμ
2/1322 2−+

 ( )
33

224333 66

ZY

YXYYYXXX VVVVV
σμ

ωωμ ++−  

*) Expressions for parameters of marked functions are approximations only.  
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Appendix 3 - Fractile of a random variable xp, pxxXP pp ==≤ )(Φ)(  
Estimate using coverage 

method 
Estimate using prediction method Distribution, 

notation 
Domain of  

X 
Fractile xp of the theoretical model 

xp =  
σ known σ unknown σ known σ unknown 

Rectangular 
R(a,b) a ≤ x ≤ b a + p (b − a) - - - - 

Normal 
N(μ,σ) 

−∞ ≤ x ≤ ∞ μ + up σ = μ (1+ up V) 
up from Table 4.1 

m − κp σ 
κp from 

Table 4.3 

m − kp s  
kp from 

Table 4.4  

m+up(1/n+1)1/2 σ 
up from Table 4.1 

m+tp(1/n+1)1/2 s 
tp(1/n+1)1/2 from 

Table 4.4  
Lognormal, 

general 
LN(μ,σ,ω) 
LN(μ,σ,x0) 

x0 ≤ x < ∞ 
pro ω > 0, 
−∞ < x ≤x0 
pro ω < 0 

( )
( ))1ln()(signexp

1

)1ln()(signexp
1

11

2

2

0
0

2

2

cu
c

x
x

cu
cc

p

p

+
+

+
+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−−

α
μ

ασμ

up for normal distribution or 

μ + up σ = μ (1+ up V) 
up for lognormal distribution from Table 4.2 

m − κp σ 

κp not given 

m − kp s  

kp from 4.5 
and 4.6 

m+up(1/n+1)1/2 σ 

up from Table  4.2 

m+tp(1/n+1)1/2 s 

tp from Table 4.7 

Lognormal, 
zero origin 
LN(μ,σ) 

0 ≤ x < ∞ ( )≅+
+

)1ln(exp
1

2

2
Vu

V
p

μ  

( )Vu p ×≅ expμ  for V < 0,2 

up for normal distribution or 

μ + up σ = μ (1+ up V) 
and up for lognormal distribution from Table 4.2 

m − κp σ 

κp not given 

m − kp s  

kp from 
Table 4.5 
and 4.6 

m+up(1/n+1)1/2 σ 

up from Table 4.2 

m+tp(1/n+1)1/2 s 

tp from Table 4.7 

Gumbel 
Gum(μ,σ) 

−∞ ≤ x < ∞ 

σμ )))ln(ln(78,045,0(

))ln(ln(1
mod

p

p
c

x

−+−≅

≅−−
 

Fractile can be estimated using the parameter lognormal distribution 
as an approximation 
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ATTACHEMENTS 

 
1. MATHCAD sheet “DistFract.mcd” Fractiles of basic types of distributions. 

MATHCAD sheet “DistFract.mcd” is intended for determination of fractiles of selected 
theoretical models.  

 
2. MATHCAD sheet “SampFract.mcd” Estimation of sample fractile. 

MATHCAD sheet “SampFract.mcd” is intended for determination of fractiles using 
limited samples.  
 
3. MATHCAD sheet “Mod_est.mcd” Estimation of models. 

MATHCAD sheet “Mod_est.mcd” is intended for determination of fractiles using limited 
samples taking into account model uncertainties.  
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Attachment 1 - MATHCAD sheet “DistFract.mcd” 
 

 
 
 
 
 

ξn p( ) 1 u p( ) V⋅+:=

3 Fractiles of the two parameter lognormal distribution ξ ln(p) = XP /μX

ξln p( )
exp u p( ) ln 1 V2

+( )⋅
⎛
⎝

⎞
⎠

1 V2
+

:= Correct formula for any V

ξlna p( ) exp u p( ) V⋅( ):= Common approximation for V < 0,2

4 Fractiles of a general three parameter lognormal distribution

Skewness a as a range variable a 1− 0.5−, 1..:=

Parameter C of three
parameter lognormal
distribution of g: C a( )

a2 4+ a+
⎛
⎝

⎞
⎠

1

3
a2 4+ a−

⎛
⎝

⎞
⎠

1

3
−

2

1

3

:=

Parameters of transformed variable: mg a( ) ln C a( )( )− ln σ( )+ 0.5( ) ln 1 C a( )2
+( )⋅−:=

sg a( ) ln 1 C a( )2
+( ):= x0 a( ) μ

1
C a( )

σ−:= Check: x0 1( ) 0.69=

ξlng p a,( ) 1
V

C a( )
1

exp sign a( ) u p( ) ln 1 C a( )2
+( )⋅

⎛
⎝

⎞
⎠

1 C a( )2
+

−
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅−:=

MATHCAD sheet "DistFract"
Fractiles of basic types of distributions

Definition of the fractile XP : P = Prob (X<XP), relative value ξ P = XP /μX

1 Input data for a random variable X

Basic characteristics : μ 1:= V 0.10:= σ V μ⋅:=

An example of the design value for a resistance variable:

α 0.8:= β 3.8:= P pnorm α− β⋅ 0, 1,( ):= check: P 1.183 10 3−×=

Range for the probability P considered below: p 0.001 0.005, 0.999..:=

Standardised normal fractile given by inverse distribution function: u p( ) qnorm p 0, 1,( ):=

2 Fractiles of the normal distribution ξ n(p) = XP /μX
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0.9 0.92 0.94 0.96 0.98 1
1

1.2

1.4

1.6

1.8

ξn p( )

ξln p( )

ξlng p 1,( )

ξlng p 1−,( )

ξgam p( )

ξgum p( )

p

Upper fractilesNotes. 1) It follows from Figure 
that the skewness of the 
distribution may have significant 
effect on assessment of the 
design value (0,001 fractile).

2) Approximate formula 
for two parameter lognormal 
distribution yields sufficiently 
accurate results for the 
coefficient of variation V < 0,2.

3) Gamma and Gumbel 
distribution can be well 
approximated by three 
parameter lognormal 
distribution having skewness 
equal to α = 2*V and α = 1,14 
respectively. 

ξgum 0.001( ) 0.804=

ξgam 0.001( ) 0.719=

ξlng 0.001 0.4,( ) 0.743=

ξlng 0.001 1−,( ) 0.53=

ξlng 0.001 1,( ) 0.801=

ξlna 0.001( ) 0.734=

ξln 0.001( ) 0.731=

ξn 0.001( ) 0.691=

Check: 

1 .10 3 0.01 0.1
0.5

0.6

0.7

0.8

0.9ξn p( )

ξln p( )

ξlng p 1,( )

ξlng p 1−,( )

ξgam p( )

ξgum p( )

p

V 0.1=The coefficient of variation:

Lower fractiles7 Relative values of fractiles ξ P = xP/μX  versus  probability P

ξgum p( ) 1 V 0.45 0.78ln ln p( )−( )+( )⋅−:=Explicit formula:

6 Fractiles of the Gumbel distribution

ξgam p( )
qgamma p k,( )

λ
:=No explicit formula is available

Transformed variable u = λ x, shape factor s = k

Parameters of gamma distribution: λ
μ

σ
2

⎛
⎜
⎝

⎞
⎟
⎠

:=k
μ

σ
⎛
⎜
⎝

⎞
⎟
⎠

2
:=

5 Fractiles of the gamma distribution



Annex A - Basic statistical concepts and techniques 

A - 37 

Attachment 2 - MATHCAD sheet “SampFract.mcd” 

 
 
 
 
 

αδ 0.707:=

ξksmod n V,( ) exp 1.65αrt
2

ks n( ) αδ
2

⋅+ 0.5 V⋅+( )− V⎡⎣ ⎤⎦:=

ξdsmod n V,( ) exp 3.09αrt
2

ds n( ) αδ
2

⋅+ 0.5 V⋅+( )− V⎡⎣ ⎤⎦:=

Model, V unknown: xk=ξkσ*μx, xd=ξdσ∗μx

ξkσmod n V,( ) exp 1.65αrt
2

kσ n( ) αδ
2

⋅+ 0.5 V⋅+( )− V⎡⎣ ⎤⎦:=

ξdσmod n V,( ) exp 3.09αrt
2

dσ n( ) αδ
2

⋅+ 0.5 V⋅+( )− V⎡⎣ ⎤⎦:=

3. Partial factor γM Check values:

Single variable, V unknown γMs n V,( )
ξks n V,( )
ξds n V,( )

:= γMs 100 0.162,( ) 1.278=

Single variable, V known γMσ n V,( )
ξkσ n V,( )
ξdσ n V,( )

:= γMσ 100 0.162,( ) 1.263=

Model, V unknown γMsmod n V,( )
ξksmod n V,( )
ξdsmod n V,( )

:= γMsmod 100 0.162,( ) 1.271=

Model, V known γMσmod n V,( )
ξkσmod n V,( )
ξdσmod n V,( )

:= γMσmod 100 0.162,( ) 1.264=

MATHCAD sheet "SampFract" for estimation of sample fractile
MATHCAD sheet for determination of the characteristic and design values and material 
partial factor γM using test data in accordance to EN 1990, Annex D.

1. Analytic expressions for coefficients of fractile estimation given in EN 1990, Annex D 

5% fractile V unknown ks n( ) qt 0.95 n 1−,( ) 1
1
n

+:=

5% fractile V known kσ n( ) qnorm 0.95 0, 1,( ) 1
1
n

+⋅:=

0,1 % fractile V unknown ds n( ) qt 0.999 n 1−,( ) 1
1
n

+:=

dσ n( ) qnorm 0.999 0, 1,( ) 1
1
n

+:=0,1 % fractile V known 

2. Characteristic and design values (relative values related to the mean)

Single variable, V unknown: xk=ξks*μx, xd=ξds∗μx

ξks n V,( )
exp ks n( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2
+

:= ξds n V,( )
exp ds n( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2
+

:=

Single variable, V known: xk=ξkσ*μx, xd=ξdσ*μx

ξkσ n V,( )
exp kσ n( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2
+

:= ξdσ n V,( )
exp dσ n( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2
+

:=

Model, V unknown: xk=ξks*μx,xd=ξds∗μx, weighting factors: αrt 0.707:=
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4. Graphs for characteristic and design values V 0.01 0.02, .4..:=

0 0.1 0.2 0.3 0.4
0.4

0.5

0.6

0.7

0.8

0.9

1

ξks 10 V,( )

ξds 10 V,( )

ξksmod 10 V,( )

ξdsmod 10 V,( )

V
Figure 1. Characteristic and design values versus coefficient of variation V for n = 100 
and weighting factors αrt= 0,301, αδ= 0,955

0 0.1 0.2 0.3 0.4
1

1.2

1.4

1.6

1.8

2

γMs 10 V,( )

γMσ 10 V,( )

γMsmod 10 V,( )

γMσmod 10 V,( )

V

5. Graphs for γM factors

Figure 2. Partial factor γ M versus coefficient of variation V for n=100 and weighting factors 
αrt= 0,301, αδ= 0,955 
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Attachment 3 - MATHCAD sheet “Mod_est.mcd” 
 

 

Δ ln δ( )
→⎯⎯

:=

Figure 1. Experimental data and 
the line re = b rt.

Characteristics of Δ: mΔ mean Δ( ):= sΔ2
nr var Δ( )⋅

nr 1−
:=

Check values:

Coeff. of variation of error terms Vδ Vδ exp sΔ2( ) 1−:= Vδ 0.107=

Coefficient of variation of the model variables X1, X2, ...: 

For example: VX1 0.08:= VX2 0.05:=

Model coeff. of variation: Vrt VX12 VX22+:= Vrt 0.094=

The total coefficient of variation Vr Vδ
2

Vrt2+:= Vr 0.143=

Standard deviations

Qrt ln Vrt2 1+( ):= Qδ ln Vδ
2

1+( ):= Q ln Vr2 1+( ):= Q 0.142=

Weighting factors: αrt
Qrt
Q

:= αδ
Qδ

Q
:= αrt 0.663= αδ 0.752=

MATHCAD sheet "Mod_est" Estimation of Models, characteristic, 
design and γM values determined from test  data

MATHCAD sheet for estimation of models, the characteristic and design 
values of resistance variable R and material partial factor  γM  using test data 
(file "rdata.prn") in accordance to EN 1990, Annex D.

1. Experimental data Test data to run the sheet without data 
recorded in the file "rdata.prn":

rt 1 2 3 4 5 6 7 8 9 10( )T:=

re 1 3 4 4 5 5 6 8 10 9( )T:=

Reading experimental data from the file "rdata.prn" located in the same directory

DATA READPRN "rdata.prn"( ):= Check values:

rt DATA 0〈 〉
:= re DATA 1〈 〉

:= nr length rt( ):= nr 21=

The means of rt and re mre mean re( ):= mrt mean rt( ):= mre 0.719= mrt 0.705=

The least square fit for y=a+bx b slope rt re,( ):= a intercept rt re,( ):= b 0.975= a 0.032=

The least square fit for y=bx, a = 0 b
re rt⋅

rt rt⋅
:= b 1.014=

0 0.5 1 1.5
0

0.5

1

1.5

re

b rt⋅

rt

2. Check of experimental 
data taken from the file 
"rdata.prn"
and check of the least 
square fit - slope b

The error terms δi

δ
re

b rt⋅
⎛⎜
⎝

⎞⎟
⎠

→⎯⎯

:=
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Check values:
ξksmod n V,( ) exp 1.65αrt

2
ks n( ) αδ

2
⋅+ 0.5 V⋅+( )− V⎡⎣ ⎤⎦:=

ξksmod nr Vr,( ) 0.774=

ξdsmod n V,( ) exp 3.09αrt
2

ds n( ) αδ
2

⋅+ 0.5 V⋅+( )− V⎡⎣ ⎤⎦:= ξdsmod nr Vr,( ) 0.608=

Model, V known: rk=ξkσ*mx, rd=ξdσ∗mr, (for V < 0,4 approximately Q =~ V):

ξkσmod n V,( ) exp 1.65αrt
2

kσ n( ) αδ
2

⋅+ 0.5 V⋅+( )− V⎡⎣ ⎤⎦:= ξkσmod 10 0.2,( ) 0.696=

ξdσmod n V,( ) exp 3.09αrt
2

dσ n( ) αδ
2

⋅+ 0.5 V⋅+( )− V⎡⎣ ⎤⎦:= ξdσmod 10 0.2,( ) 0.516=

5. Estimates of the partial factors γM Check values:

Single variable, V unknown γMs n V,( )
ξks n V,( )
ξds n V,( )

:= γMs 10 0.1,( ) 1.294=

Single variable, V known γMσ n V,( )
ξkσ n V,( )
ξdσ n V,( )

:= γMσ 10 0.1,( ) 1.165=

Model, V unknown γMsmod n V,( )
ξksmod n V,( )
ξdsmod n V,( )

:= γMsmod nr Vr,( ) 1.273=

Model, V known γMσmod n V,( )
ξkσmod n V,( )
ξdσmod n V,( )

:= γMσmod nr Vr,( ) 1.234=

3. Coefficients of fractile estimation given in EN 1990, Annex D n 3 3.5, 30..:=

5% fractile V unknown ks n( ) qt 0.95 n 1−,( ) 1
1
n

+:= Check values:

ks 10( ) 1.923=
5% fractile V known, appr. kσ n( ) qnorm 0.95 0, 1,( ) 1

1
n 2−

+⋅:=
kσ 10( ) 1.745=

0,1 % fractile V unknown ds n( ) qt 0.999 n 1−,( ) 1
1
n

+:= ds 10( ) 4.507=

0,1 % fractile V known, appr. dσ n( ) qnorm 0.999 0, 1,( ) 1
1

n 2−
+:= dσ 10( ) 3.278=

4. Characteristic and design values (relative values related to the mean V 0.0 0.001, .4..:=

Note that the range variable V is generally used for the coefficient of variation of a single variable 
V and for a model investigation Vr, these may be  different, for example V = 0,12 and Vr = 0,142. 

Single variable, V unknown: rk=ξks*mr, rd=ξds∗mr

ξks n V,( )
exp ks n( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2
+

:= ξds n V,( )
exp ds n( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2
+

:=

Single variable, V known: rk=ξkσ*mr, rd=ξdσ*mr

ξkσ n V,( )
exp kσ n( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2
+

:= ξdσ n V,( )
exp dσ n( )−( ) ln 1 V2

+( )⋅⎡⎣ ⎤⎦

1 V2
+

:=

Model, V unknown: rk=ξks*rx, xd=ξds∗mr, weighting factors αrt and αδ taken from the 
above experimental data re and rt (for V < 0,4 approximately Q =~ V):
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6. The relative characteristic and design values, the model values estimated using 
weighting factors determined above from experimental data given in the file "rdata.prn"

0 0.1 0.2 0.3 0.4
0.4

0.5

0.6

0.7

0.8

0.9

1

ξks 10 V,( )

ξds 10 V,( )

ξkσ 10 V,( )

ξdσ 10 V,( )

ξksmod 10 V,( )

ξdsmod 10 V,( )

ξkσmod 10 V,( )

ξdσmod 10 V,( )

V

Figure 2. Variation of the characteristic and design values with coefficient of variation V for n = 10.

The char. value of X: rks n V,( ) b mrt⋅ ξks n V,( )⋅:= Example rks 21 0.12,( ) 0.575=

The model char. value of X: rksmod n V,( ) b mrt⋅ ξksmod n V,( )⋅:= From data: rksmod nr Vr,( ) 0.553=

7. Partial factor γM, the model values estimated  using weighting factors determined 
above from experimental data given in the file "rdata.prn"

0 0.1 0.2 0.3 0.4
1

1.2

1.4

1.6

1.8

2

γMs 10 V,( )

γM σ 10 V,( )

γMsmod 10 V,( )

γM σmod 10 V,( )

V
Figure 3. Variation of the partial factor γM versus coefficient of variation V for n=10. 
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8. Variation of ξks and γMs with n and V for the model values estimated  using weighting 
factors determined above from experimental data given in the file "rdata.prn".

ξks

ξks 3 0.0,( ) 1=

Figure 4. Variation of the characteristic values ξks with n and V 
. 

γMs

γMs 20 0.1,( ) 1.208=

Figure 5. Variation of the partial factor γ M with n and V . 
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Summary 
 

Using basic principles of the reliability theory described in Chapter II Elementary 
methods of structural reliability I, the operational techniques for estimating partial factors of 
basic variables are derived and applied to common permanent and variable loads. The 
described computational procedures are illustrated by a number of numerical examples, which 
are supplemented by MATHCAD, EXCEL and MATHEMATICA sheets.  

 
 

1 INTRODUCTION 
 
1.1 Background materials 

Fundamental concepts and procedures of structural reliability are well described in a 
number of national standards, in the new European document EN 1990 [1] and International 
Standard ISO 2394 [2]. Additional information may be found in the background document 
developed by JCSS [3] and in recently published handbook to EN 1990 [4]. Guidance on 
application of the probabilistic methods of structural reliability may be found in publications 
and working materials developed by JCSS [5] and in relevant literature listed in [4] and [5]. 
Guidance on structural systems and time dependent reliability may be found in [6] and [7]. 
 
1.2 General principles 

The theory of structural reliability considers all basic variables as random quantities 
having appropriate types of probability distribution. Different types of distributions should be 
considered for actions, material properties and geometrical data. In addition, model 
uncertainties of actions and resistance models should be taken into account. Prior theoretical 
models of basic variables and procedures for probabilistic analysis are indicated in JCSS 
documents [5].  

This appendix is a direct extension of Chapter II "Elementary methods of structural 
reliability" of the main text to which reference is frequently made. 

 
 
2 DESIGN POINT 

 
Theoretical principles can be utilized in estimation of essential reliability elements 

(partial factors, reduction factors, combination rules, etc.) used in operational standards 
including Eurocodes that are based on a partial factor method. To explain how theoretical 
findings are transmitted into design recommendations a graphical representation of the 
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random variables E and R and the corresponding limit state function (2) of Chapter II R - E = 
0 is used similarly as in Annex C of EN 1990 [1].  

Figure 1 (adopted from [1]) shows the random variables E and R in a two-dimensional 
diagram, where the horizontal axis indicates the fraction R/σR, the vertical axis the fraction 
E/σE. It is assumed that E and R are mutually independent variables having a normal 
distribution. As indicated in Examples 5 and 6 of Chapter II such an assumption might not be 
entirely realistic and should be considered as an approximation only. However, generally any 
distribution may be transformed to the normal distribution (at least in some domain) and, 
therefore, the random variables E and R in Figure 1 may be considered as transformed 
variables having originally other type of distribution.  

Figure 1 also shows the limit state function (failure boundary) R - E = 0, which 
corresponds to expression (2) of Chapter II transformed to the coordinates used in Figure 1. 
Note that the failure boundary would be the diagonal of the main axes if the standard 
deviations of R and E have the same magnitude, σR = σE. The safe (desirable) domain of the 
variables R and E, where condition (1) of Chapter II is satisfied, is located under the failure 
boundary, the failure (undesirable) domain lies above the boundary R – E = 0. 

 
 

Figure 1. Design point Rd, Ed. 
 
In verification of structural reliability any point on the failure boundary R – E = 0 

could be considered as the critical (design) point (as apparent from the historical development 
of design methods described in previous chapter of this Handbook 2). However, it has been 
proved (see for example [5]) that the best option (assuring consistency and invariance of the 
solution for a different formulation of the limit state function and different basic variables) is 
the point (Rd, Ed) closest to the mean (μE, μR), which is indicated in Figure 1. Accepting this 
finding, it follows directly from Figure 1 that the design point coordinates (Rd, Ed) may be 
written in the form  

 Rd = μR − αRβσR  (1) 

 Ed = μE − αEβσE  (2) 

Here αE and αR denote the so-called sensitivity factors of variables E and R. The “minus“ 
signs in equations (1) and (2) are conventionally accepted in the documents CEN [1] and ISO 
[2]. 

 

Design point  
(Rd /σR, Ed /σE)

E 

R 
σR 

 αEβ 

σE 

Limit state function R − E = 0 

β 

 αRβ μR /σR 

 μE /σE 
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It follows from Figure 1 that the sensitivity factors αE and αR (direction cosines of the 
failure boundary) can be written as  

 σσσα 22/ REEE +−=  (3) 

 σσσα 22/ RERR +=  (4) 

In Eurocodes an approximation of these sensitivity factors by fixed values is further accepted 

 8,0/ 22 =+= σσσα RERR  (5) 

 7,0/ 22 −=+−= σσσα REEE  (6) 

The validity of such an approximation is delimited by means of a condition for the ratio of the 
standard deviations in the form  

 0,16 < σE / σR < 7,6 (7) 

When this condition is not satisfied, then the sensitivity factor α = ±1,0 is 
recommended to be used for the variable having a greater standard deviation. Let us remark 
that this simplification is on the safe side as the sum of squared direction cosines should be 
equal to one.  

The design values Ed and Rd of the variables E and R are thus defined as fractiles of 
normal distribution  

 P(E > Ed) = ΦU(+αEβ) = ΦU(-0,7β)  (8) 

 P(R < Rd) = ΦU(-αRβ) = ΦU(-0,8β) (9) 

where ΦU(u) denotes a standardized normal distribution. If β = 3,8, then the design values ed 
and rd are fractiles corresponding approximately to probabilities 0,999 and 0,001. Note that in 
equation (9) the use of the symmetry of normal distribution is taken into account, i.e. of the 
relationship 1 - ΦU(+αEβ) = Φu(-αEβ).  

When the load or resistance model contains several basic variables (other loads, more 
materials, geometrical data), equations (8) and (9) holds only for the leading variables (the 
most significant for the studied condition of reliability). For other (accompanying) variables 
the requirements on design values are reduced and it holds  

 P(E > Ed) = ΦU(+0,4αEβ) = ΦU(-0,28β) (10) 

 P(R < Rd) = ΦU(-0,4αRβ) = ΦU(-0,32β) (11) 

When β = 3,8 the design values of accompanying (non-leading) variables are fractiles 
approximately corresponding to probabilities 0,9 and 0,1.  

Design values are the upper fractiles (for actions) or the lower fractiles (for 
resistance), corresponding to certain probabilities of being exceeded (actions) or not reached 
(resistance). For leading variables, the probabilities are given by the distribution function of 
the normal standardized distribution for values u = +αEβ and -αRβ, in the case of non-leading  
variables for reduced values u = +0,4αEβ and –0,4αRβ. These probabilities (for the lower 
fractile approximately 0,001 for leading and 0,1 for accompanying variables) then serve to 
determine the design values even for those variables, which do not have normal distribution. 
Let us note that according to the general principles, it is necessary in the case of upper 
fractiles (actions) to consider the complementary probabilities (close to the value 1).  
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Example 1.  

The design values Ed and Rd of variables E and R from Example 4 will be assessed 
assuming that the reliability index β = 3,8, αE = -0,7 and αR = 0,8. According to equation (8), 
it holds for E that  

 P(E > ed) = ΦU(αEβ) = ΦU(-2,66) = 0,0039   

The complementary probability is therefore 0,9961 and we obtain from equation  

 ed = μ - (0,45 + 0,78ln(-ln(p)))σ = 50 – (0,45 + 0,78×ln(-ln(0,9961)))×10 = 88,75  
Note that when the normal distribution is assumed, it is given   

 ed = μ + upσ = 50 + 2,66 × 10 = 76,6   

According to equation (9), it holds for R  

 P(R < Rd) = ΦU(-αRβ) = ΦU(-3,04) = 0,0012   
For the lognormal distribution with the mean of 100 (units) and standard deviation of 

10 (units) it follows  

 Rd ≅ μ exp(unorm,p × V) = 100 × exp(-3,04×0,10) = 73,79   

For normal distribution we obtain  

 Rp = μ + upσ = 50 – 3,04 × 10 = 69,6   

Obviously, it holds for the coordinates of the design point that ed > rd and the tie rod 
does not satisfy the condition (1) of Chapter II (we know from the Example 4 of Chapter II 
that β is only 3,09). In order to satisfy the condition for a reliability index of 3,8, the 
parameters of variables E and R would have to be modified.  

The attached MATHCAD sheets StRod.mcd, DesVRod.mcd may be used to make all 
numerical calculations. 
 
 
3 PARTIAL FACTORS  

 
3.1 Material properties 

The above described reliability concepts may be used to assess the partial factors. The 
attached MATHCAD sheets GammaRGQ.mcd cover all computational procedures described 
below and may be used to make additional numerical calculations. 

In accordance to EN 1990 [1] or ISO 2394 [2] the partial factor γR of material 
resistance R is defined as the fraction of its characteristic value Rk and the design value Rd, 
thus  

 γR = Rk / Rd (12) 
It is further assumed that the characteristic value Rk of a resistance variable R is 

defined as its 5% fractile [1], [2] and [5].  
If a resistance variable R (strength) has a normal distribution, then the characteristic 

value Rk is given as  

 Rk = μR − 1,645 × σR = μR(1 − 1,645 × VR) (13) 
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The design value Rd of R can be estimated using the above derived equation (22) (see 
also documents [1] and [2]), thus  

 Rd = μR − αR × β × σR = μR − 0,8× β × σR = μR(1 − 0,8× β × VR) (14) 

In equation (13) and (14) μR denotes the mean, σR the standard deviation, VR the coefficient of 
variation and αR = 0,8 the sensitivity factor of R.  

Taking into account equations (13) and (14) it follows from (12) that the partial factor 
γR for a normal distribution of R can be assessed as 

 γR = (1 − 1,645 × VR) / (1 − 0,8 × β × VR) (15) 
Assuming a lognormal distribution of R its characteristic value Rk can be determined 

[1], [2] using approximate equation  

 Rk = μR × exp (− 1,645 × VR) (16) 

Similarly the design value Rd is approximated [1], [2] as 

 Rd = μR × exp (−αR × β × VR)  (17) 

Taking into account equations (16) and (17) it follows from (12) that the partial factor γR for a 
lognormal distribution can be assessed as 

 γR = exp (− 1,645 × VR) / exp (−αR × β × VR) (18) 

Figures 2 and 3 show the variation of the partial factor γR of the material property R 
with the reliability index β for selected values of the coefficient of variation VR given for 
normal distribution by equation (15) (Figure 2) and lognormal distribution by equation (18) 
(Figure 3).  

 

 
Figure 2. Variation of γR  with β for selected coefficients of variation VR = 0,05; 0,10; 0,15 

and 0,20, and for normal distribution of R. 
 
 

Generally the partial factor γR increases with increasing β. The increase of γR is 
considerably greater in the case of normal distribution (Figure 2) than in the case of lognormal 
distribution (Figure 3). The effect of the type of distribution is particularly obvious for 
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coefficients of variation VR greater than 0,10. A considerable effect of the type of distribution 
on the theoretical value of partial factors can be expected also for other basic variables, in 
particular for actions. 

Figure 3. Variation of γR with β for selected coefficients of variation VR = 0,05; 0,10; 0,15 and 
0,20, and for lognormal distribution of R. 

 
 
 
3.2 Permanent load 

Consider a self-weight G having a normal distribution. Similarly as in the case of 
material property when a reference period T instead of the design working life Td is used in 
the reliability verification of a structure, then the design value of G should be determined for 
T instead of Td. It is assumed that the characteristic value Gk of G is defined as the mean μG 
[1], [2] and [5]: 

 Gk = μG (19) 

The design value Gd is given by equation (23) of Chapter II (see also documents [1], [2]) as 

 Gd = μG − αG × β × σG = μG + 0,7× β × σG = μG(1 + 0,7× β × VG) (20) 

In equation (20) μG denotes the mean, σG the standard deviation, VG the coefficient of 
variation and αG = − 0,7 the sensitivity factor of G.  

The partial factor γG of G is given as [1], [2] 

 γG = Gd / Gk (21) 
Taking into account equations (19) and (20) it follows from (21) that 

 γG = (1 +0,7× β × VG) (22) 

Figure 4 shows the variation of the partial factor γG with the reliability index β for 
selected values of the coefficient of variation VG = 0,05; 0,10; 0,15 and 0,20. Note that γG = 
1,35 (recommended in EN 1990 [1]) corresponds approximately to the reliability index β = 
3,8 if the coefficient of variation is about 0,1 (the value recommended in EN 1990 [1] was 
further increased by 5% to take into account model uncertainty). 
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Figure 4. Variation of γG with β for selected coefficients of variation VG = 0,05; 0,10; 0,15 and 
0,20, and for normal distribution of G. 

 
 

It follows from Figures 2, 3 and 4 that less significant variation with β -values should 
be generally expected for the partial factor of self-weight γG than for the partial factor of 
material property γR.. 

 
3.3 Variable load 

A similar procedure as in the case of permanent load G can be used for estimation of 
the partial factors γQ for variable loads Q. Assuming Gumbel distribution the characteristic 
value (0,98 fractile) is given as  

 Qk = μQ (1 − VQ (0,45 + 0,78 ln(−ln(0,98)))) (23) 

The design value Qd is given as 

 Qd = μQ (1 − VQ (0,45 + 0,78 ln(−ln(Φ-1(−αEβ)))) (24) 

In equation (23) and (24) μG denotes the mean, VQ the coefficient of variation of annual 
extremes of Q and αG = − 0,7 the sensitivity factor of Q.  

The partial factor γQ of Q is given as [1], [2] 

 γQ = Qd / Qk (25) 

Figure 5 shows the variation of γQ with the coefficients of variation VQ for selected 
values of β assuming Gumbel distribution of Q. It appears that in case of a variable action Q 
the reliability index β has a significant effect on the partial factor γQ. The following Figure 6 
shows the variation of γQ with the reliability index β for selected values of the coefficients of 
variation VQ assuming again Gumbel distribution of Q. 

It follows from Figures 5 and 6 that for the reliability index β = 3,8 and the coefficient 
of variation VQ up to 0,5, the partial factor γQ is less than 1,3. However the coefficient of 
variation may be also greater than 0,5 and other distribution may be more adequate (see other 
Chapters of this Handbook). That is why a conservative value γQ = 1,5 is recommended in 
EN 1990 [1]. 

 

0,5 

1 

1,5 

2 

2,5 

0 1 2 3 4 5 

γG 

β 

VG = 0,20 
 0,15 
 0,10 
 0,05 



Annex B –Elementary methods of structural reliability II 

 B - 8  

Figure 5. Variation of γQ with the coefficients of variation VQ for selected values of β 
assuming Gumbel distribution of Q. 

 

Figure 6. Variation of γQ with the reliability index β for selected values of the coefficients of 
variation VQ assuming Gumbel distribution of Q. 
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It follows from Figure 6 that for the reliability index β ≅ 3 the theoretical value of the 
partial factor γQ is about 1. This is due to the fact that the characteristic value Qk is defined as 
0,98 fractile, and when β ≅ 3 then Qk, is approximately equal to Qd (for more details see 
equations (23) and (24)). Additional numerical calculations can be easily obtained using the 
attached MATHCAD sheets GammaRGQ.mcd, which include all the above described 
computational procedures. 
 
 
4 THE GENERAL CASE OF RELIABILITY ANALYSIS 
 
4.1 General 

In the Chapter II “Elementary methods of structural reliability I” of this handbook it 
has been presented what is called the fundamental case of structural reliability. It is the case in 
which the limit state function can be represented by only two random independent variables, 
the effect of the actions and the resistance. This fundamental case represents a very interesting 
case for introducing the reliability concepts due to its very intuitive reasoning, and that we are 
used to this concepts of global action effect and resistance. Also, due to the fact that in two 
dimensions only is easy render graphic simple representations. 

But, unfortunately, only in a few cases the limit state function may be represented by 
the fundamental case, reducing the structural reliability problem to a simple resistance versus 
action effect formulation assuming their independents. In most cases, at least, a few more 
variables will be needed. In general the resistance is a function of the material(s) properties 
and the dimensions of the structure or element and the action effects depend on the various 
applied loads and densities and dimensions of the structure. Even, not always the resistance 
and action effects can be considered independent: for instance, some dimensions affect both 
the actions and resistances. Even more, the action effects may depend on the response of the 
structure as a whole (e.g., the dynamic actions). 

The limit state function can be written as: 

 Z(X1, X2, X3, ...) = 0 ; (26) 

 or in vector form:  

 Z(X) = 0 ;  (27) 
where X = {X1, X2, X3, ...} is the vector of the random variables depending on time defining 
the limit state function. 

In this case also, Z(X) > 0 represents the safe region and Z(X) < 0 the unsafe region. 
The probability of failure, in this case is obtained as:  
 

 Pf  = P [Z(X)  ≤ 0] = ∫ ∫
<

...
0)( XZ

fZ(x) dx; (28) 

where fZ(x) is the joint density probability distribution of the vector of variables X.   
In the case of all the basic variables are independent, in a lot of cases we can adopt this 

hypothesis as a good approximation, the joint density probability distribution of X is the 
product of the marginal density probability distribution of each variable. Therefore, is 
possible to put the equation (18) in the form: 

 Pf  = P [Z(X) < 0] = ∫ ∫
<

...
0)( XZ

fX1(x1) fX2(x2) ...fXn(xn) dx1dx2...dxn. (29) 
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4.2 Basic variables 
Basic variables are those variables needed to characterize and define the behaviour of 

a structure, and its safety, relating to a determined limit state.  
The designer has some degree of freedom in order to choose the basic variables: In 

general, those used in the conventional design are chosen: dimensions, weights, loads, 
material strengths, etc. In general, independent basic variables are considered as any 
dependence adds complexity and it is difficult to define the degree of dependence. However, 
some variables as the tension, compression strength and the modulus of elasticity of the 
material are known to be dependent, but one can, generally, deal with them as they were 
independent.  

In order to analyse structural reliability it is necessary to characterize basic variables 
statistically. That is, to define, at least, their distribution functions, parameters and correlation 
matrix. The parameters of distributions can be estimated on the basis of data by means of the 
usual statistical techniques: maximum likelihood, methods of moments, etc. The data should 
be carefully investigated in order to exclude the outliers, to analyse trends, and so on. A 
graphical representation of data and of the model adopted is generally useful. 

Guidance concerning distribution functions and their parameters for the models of 
common actions and resistances in structural reliability are given in reference [5]. 

 
Example 1:  

Consider a basic variable and the following experimental data: 
 
data={1.3,3.2,4.3,1.3,5.4,3.7,3.8,4.0,2.9,3.2,4.5,4.0,3.4,2.4,1.8,1.7,2.2,4.1,2.6,4.1,3.3, 

  3.5,3.7,2.4,2.8,2.5,3.,3.3,2.6,2.9,2.4,2.6,2.9,2.8,3.1,3.2,3.4,3.5,3.2,3.3,3.}; 
 
In the following the results obtained with the attached MATHEMATICA package 

distribution-fit are used. The following statistical characteristics were obtained: 
 
Number of data Mean Variance Standard variation Coefficient of variation 

41 3,105 0,700 0,837 0,270 
 

We try to fit the normal, lognormal and gamma distributions to data. The parameters 
of the distributions are obtained by the method of moments. Assuming the following 
intervals: {1.3-2.3, 2.3-2.7, 2.7-3.3, -3.7, 3.7-4.1, 4.1-6}, the Chi square test is performed. 

In the figure are represented the histogram and the density distribution function (in 
this case the normal distribution). The results obtained for each distribution are shown in the 
following table: 

 
 

 
The range of the confidence level is due to the different hypothesis. The moments are 

known a priori, then the degrees of freedom are the number of intervals minus one; or 

2 4 6 8

0.1

0.2

0.3

0.4

0.5
normal

Distribution Parameters Estimator 
W 

Confidence 
Level % 

Normal 3,103- 0,847 0,612 96,0 - 99,6 
Gamma 13,40 - 0,231 1,001 91,0 – 98,6 
Lognormal 1,096 – 0,268 1,310 86,0 – 97,1 
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obtained from data, then the degrees of freedom are the number of intervals minus three. 
Therefore to the same estimator correspond two confidence levels. 

It appears that all three distributions fit well the data (normal distribution seems to be 
the best). Therefore, it is not clear what distribution to choose; plotting the cumulative 
distribution functions and the point values in direct representation and with the ordinates in 
double logarithmic scale, then  it is possible to have a new insight in the problem. 
 
4.3 Tail sensitivity problem 

In statistics, the decisions are, generally, not taken after a “mathematical proof”. A 
hypothesis is accepted if evidence for its rejection is not found. The probability distribution 
assigned to any variable can have an important influence on the estimated probabilities of 
failure. Besides, when assigning distribution functions, the data available are mainly, of 
course, of the central part of the distribution where the election of one or other distribution 
function is no very significant. This problem is called  "tail sensitivity problem". 

This problem is show graphically in Figure 7 where three distribution functions with 
the same mean and standard deviation, corresponding to the case of the Example 1: normal, 
gamma and log-normal, are represented both at normal scale and with double logarithmic 
ordinates. (i.e. z = –Log(-Log(y)) ), that is in Gumbel’s paper, that increases the scale of the 
upper tail). At normal scale there are no significant difference among the distributions, but 
looking at the Gumbel’s paper, the differences are little for the 0,95 fractile (i.e. characteristic 
value), while the differences are appreciable for the 0,999 fractile (i.e. design value). Also, on 
the Gumbel’s paper may be seen that all distributions fit adequately to the points distribution, 
assuming for the ordered points a probability of i/n +1, but in order to estimate the design 
value (to say, fractile 0,999) it is necessary to extrapolate, and thus the difference among 
distributions is important. The higher point of the data corresponds to approximately to 0,975 
fractile (1-1/42). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Cumulative distribution functions at normal scale and in Gumbel’s paper. 
 
 

5 AN EXAMPLE OF REINFORCED CONCRETE SLAB  
 
5.1 General 

Various design concepts mentioned above may be illustrated considering a simple 
example of a reinforced concrete slab in an office building. The example shows how different 
design methods (permissible stresses, global safety factor, partial factor method) treat 
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uncertainties of basic variables by choosing different input (design) values. The example also 
indicates significance of the reliability theory in structural design and advantages of the 
reliability based partial factor method compared to the other design formats.  

Some basic terms (e.g. characteristic strength) and calculation procedures used in this 
Section will be properly defined in various Chapters of this Handbook 2. Nevertheless the 
following text can be understood at least intuitively.  

 
5.2 A reinforced concrete slab 

A simply supported slab having the span of 6 m is exposed to a permanent load (self-
weight of the slab and other fixed parts of the building), which is estimated by the 
characteristic value (equal to the mean value) gk=7 kN/m2. In accordance with the EN 1991-1-
1 [8] the characteristic value of the imposed load in an office area qk=3 kN/m2 may be 
assumed. It is, however, well known that the mean value of this load is considerably lower, 
about 0,8 kN/m2. 

Further, the concrete C20/25 having the characteristic strength fck=20 MPa (the mean 
30 MPa) and reinforcement bars S 500 having the characteristic strength fyk=500 MPa (the 
mean 560 MPa) are to be used. Using previous experience, the total height of the slab 0,25 m 
(effective depth about 0,25 – 0,03 = 0,22 m) was specified in advance. Given the above data 
verification of the preliminary specifications and estimation of the necessary reinforcement 
area of the slab should be done.  

 
5.3 Design of a slab 

Consider first a simple drawing of the slab cross-section including simplified stress 
distribution diagrams in the compressive concrete zone (rectangular and triangular) as 
indicated in Figure 8. 

 
Figure 8. Stress distribution in a reinforced concrete slab. 

 
 
When the rectangular stress diagram is assumed the following equilibrium conditions 

can be written (see Figure 8):  

 0,8 fc x b = As fy (30) 

 As fy(d – 0,4 x) = M (31) 

The basic variables used in equations (30) and (31) are evident from Figure 8: 
d denotes the effective depth, x the depth of the neutral axis, b the width of the slab 
(considered as 1 m), As the area of the reinforcement, fc the concrete strength and fy the 
reinforcement strength (yield point). The bending moment in equations (31) is given as  

  

x 
d 

 As

 fc

 Asfy 

0,8bxfc

0,8x 

 M 

 fc

0,5bxfc
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8

)( 2LqgM +
=  (32) 

L denotes the span of the simply supported beam. 
Using equilibrium conditions (29) and (30) the following formula for the 

reinforcement area As can be derived: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= 2

cy

c 211
bdf
M

f
f

bd
As  (33) 

Without going into technical details note, that equation (33) may be used 
approximately for the global safety factor methods and partial safety factor method. Attached 
EXCEL sheet RCBeam and MATHCAD sheet RCBeam may be applied to make necessary 
calculations.  

The classical permissible stresses method assumes a triangular compressive stress 
block in the compressive concrete zone, which is also indicated in Figure 8, and linear stress 
strain diagram. The reinforcement area As can be found using the attached MATHCAD sheet 
RCBeam.mcd, which includes further calculation details.  

Note that up to now all the basic variables have been considered as deterministic 
quantities without considering any uncertainties that may potentially affect their actual values. 
However, it is well recognised that some of the basic variables entering equation (31) might 
have considerable scatter (particularly the load effect (bending moment) M, concrete strength 
fc, and reinforcement strength fy). On the other hand the geometric data As, b and d seem to be 
much less uncertain (almost fixed or deterministic).  

To get a first estimate of the area As, one may take the mean (average) values of all the 
basic variables involved. Intuitively it is clear that this might be not safe enough and instead 
of the mean values somehow “conservative (safe) values” should be applied. Table 1 indicates 
the mean values together with values of basic variables as used in design in accordance with 
the rules of above-mentioned design methods.  

 
Table 1. Input design (characteristic) values of loads and material strengths used in design 
calculation using different design methods.  

Design method  
Basic variable 
 

 
The mean 
value Permissible 

stresses 
Global 
safety factor 

Partial 
factor 

Permanent load g [kN/m2] 7 7 7 9,45 
Imposed load q [kN/m2] 0,8 3 3 4,5 
Concrete compressive strength fc [MPa] 30 5,5 20 13,3 
Reinforcement tensile strength fy [MPa] 560 275 500 435 

 
Table 1 clearly indicates the differences between considered design methods. For 

example, the input values of the permanent load g used in design calculation in accordance 
with the permissible stresses method and the global safety factor method are equal to the 
mean value (7 kN/m2), while the design value in the partial factor method (9,45 kN/m2) is 
obtained as a product of the characteristic value and the partial factor γG = 1,35. The design 
value of imposed load q used in design calculation in accordance with the permissible stresses 
method and the global safety factor method are equal to the characteristic value (3 kN/m2), 
while the design value (4,5 kN/m2) in the partial factor method is product of the characteristic 
value and partial factor γQ = 1,5. 
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The input calculation values for the compressive concrete strength fc used by different 
design methods are considerably different from its mean (30 MPa). The same is true for the 
tensile strength of reinforcement fy. Permissible stresses indicated in Table 1 can be found in 
design standards. Obviously they are much lower than the mean value as they are assumed to 
take into account all uncertainties including loads. Input strengths in the global factor methods 
are equal to the characteristic values. In the partial factor method the design strength of 
concrete 13,3 MPa is obtained by dividing the characteristic value 20 MPa by the partial 
factor γM = 1,5, similarly the design strength of steel 435 MPa is obtained as a fraction of the 
characteristic value 500 MPa and the partial factor γM = 1,15. Note that the factor 1,9 is used 
to enhance the load effect (bending moment M) when the global factor method is used to 
specify the reinforcement area As. 

Resulting reinforcement areas obtained for all the design methods mentioned above 
are indicated in Table 2. 

 
Table 2. A simply supported reinforced concrete slab designed using different historical 
methods assuming the span L = 6 m, the height h = 0,25 m (d = 0,22 m) and the loads gk= 
7 kN/m2, qk= 3 kN/m2 (the mean 0,8 kN/m2), C20/25 (fck = 20MPa, the mean 30 MPa), 
fyk=500 MPa (the mean 560 MPa). 
  

Design method M [kNm] As [m2] μMR [kNm] β pf 
The mean value (absurd) 35,1 0,00038 35,1 0 0,5 
The permissible stresses  45,0 0,00204 228,9 8.0 0,44×10-16 

The global safety factor (s0 =1,9) 45,0 0,00082 97,4 5,0 0,32×10-7 
The partial factors method (CEN) 62,8 0,00069 82,4 4,2 0,12×10-5 

 
The attached EXCEL sheet RCBeam and MATHCAD sheet RCBeam may be used to 

check the resulting data indicated in Table 2. These sheets also indicate further details of 
applied computational procedures.  

It follows from Table 2 that resulting reinforcement areas vary within a broad range 
from As = 0,00038 m2 (the mean value estimate) up to As = 0,00204 m2 (the permissible stress 
method). The most economic procedure appears to be provided by the partial factor methods 
that leads to the lowest reinforcement area As = 0,00069 m2. 

 
5.4 Reliability consideration 

The rectangular stress distribution (indicated in Figure 8), assumed in design 
calculation according to the global or the partial factor method, is accepted for reliability 
investigation of the slab designed by any of the design methods illustrated in Table 2 
(including the permissible stress method, which assumes a triangular stress diagram). Thus, 
taking into account equilibrium conditions (30) and (31) the limit state function (16) may be 
written as  

 
8
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Assuming the limit state function (34) the reliability indexes β and the failure 
probabilities pf can be determined using commercially available software VaP [9] or 
COMREL [10] or the MATHEMATICA notebook FORM.nb. An approximate value of the 
reliability index β and the failure probability pf (with an acceptable accuracy) may be 
obtained using the attached MATHCAD sheet RelRCB, which is based on a simple procedure 
of numerical integration. The self-content MATHCAD sheet RelRCB is provided with 
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explanatory notes (including information on input theoretical models of basic variables) and 
might be intuitively understood without any additional information. Detailed description of 
the applied numerical procedure is given in the other chapters of this Handbook 2. 

Resulting reliability indexes β and the failure probabilities pf are indicated in Table 2. 
The partial factor method leads to the reliability level described by β = 4,2 (failure probability 
1,2 10-5) that is very close to the value β = 3,8 (failure probability 7,2 10-5) recommended in 
EN 1990 [1]. Slightly more conservative design (β = 5) is provided by the global safety factor 
methods (see Table 2). However, the permissible stresses method seems to lead to a rather 
uneconomical design (β = 8). Obviously, "the mean value method" proves to be unacceptable 
as it yields the lowest reinforcement area As = 0,00038 m2 (reinforcement ratio 0,0022 only) 
corresponding to β = 0 and high probability of failure of Pf = 0,5.  

 
 

6 ASSESMENT OF THE FAILURE PROBABILITY IN GENERAL CASE  
 
6.1 General 

There are several different procedures for assessing failure probability in a general 
case of more variables: 

 
• Analytical: Only in a few, very simple cases it is possible to find the analytical correct 

solution. Depends on the variables vector, all must be independent and normally 
distributed, and on the limit state region, it must be defined by hyper-planes. It cannot 
be considered as a general solution. 

• Numerical: It is an exact solution in the sense that we can get, in principle, all the 
precision we need. The simple trapezoidal rule of integration gives, in general good 
results if there are not too many variables (4 or 5). The complexity of integration 
increases exponentially with the number of variables.  

• Monte Carlo methods: The Monte Carlo simulation techniques are bases on the 
random sampling of the variables and carry a long number of artificial experiments. 
The use of this approach is increasing notably nowadays, due to bigger power and 
speed of the computers. The crude application of the method lead to the same 
difficulties explained above. Variance reduction and importance methods are 
employed to avoid those difficulties. 

• First and Second Order Reliability Methods (FORM and SORM): These approximate 
methods give iterative algorithms that allow to obtain the reliability index, using a 
linear or quadratic approximation to the limit state surface in the point of minimum 
distance to the mean point of the variables. 

 
6.2 First and Second Order Reliability Methods (FORM and SORM) 
  Hassofer and Lind developed an algorithm invariant for the formulation of the limit 
state function. To obtain the reliability index the following steps have to be followed: 
 

1 Define the limit state function. 
2 Characterize statistically the basic variables; i.e.: mean, standard deviation, 

distribution function and correlation matrix. 
3 Transform the set of basic variables into a set of independent variables (by means 

of the Rosenblatt’s transformation, for instance).  
4 Standardize the set of basic variables by the transformation X→U, such that 
 

 E (U)  =  0 , and CoV[U,UT] = 1 .  (35) 
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5  Obtain the length of the minimum distance vector from the new origin point to the 

tangent hyper-plane of the limit state surface, referred to the new variables, in the 
intersection point of that vector with the limit state surface.   

6 Obtain the design point, (X1d, X2d,...,Xnd) and the sensitivity coefficients, α1, 
α2,...,αn, the unitary cosines of that vector. 

Figure 1 represents the space of the fundamental case, with only two variables: the 
action effect and the resistance. The origin of the β vector corresponds to the mean point of 
the variables X, i.e.: (μX1, μX2,...μXn). The minimum distance vector from this point to the limit 
state surface is perpendicular to the hyper-plane (a straight line in the two variables case) 
tangent to the limit state surface in the design point (xd1,xd2,...xdn). The sensitivity coefficients 
α represent the influence of the corresponding variable in the failure probabilities.  

The following equations hold for the sensitivity coefficients 

 │αi│≤ 1;    ∑
n

1

αi
2 = 1  (36) 

Usually these values αi, are taken as positives if the correspond to a resistance variable 
and negatives in the case of effects of action variables.  

When the limit state surface is highly non-linear, the error of substituting the surface 
by the tangent hyper-plane in that point can be important. In those cases a minor error is 
obtained if the limit state surface is substituted by the tangent quadratic surface. That is: 
taking the square term in the Taylor's series. In this case the method is called Second Order 
Reliability Method or SORM. 

As it is said, the reliability index β and the probability of failure pf are related by the 
formula: 

  Pf = Φ(-β);      β =Φ-1(1- Pf ); (37) 

where Φ(·) stands for the standard normal distribution and Φ-1(·) for its inverse. 
 
 
Example 2 
a) Design of a steel beam 
Simply supported beam: IPE 240 S235 

 
Span     L  = 6,0 m 
Cross section area:   A  = 39,12 ·10-4 m2 
Resistance modulus,   W =  3 243 ·10-6 m3 

Yield stress   fy = 235 MPa 
 

Actions:  
Permanent load: gk = 7,0 kN/m 
Variable load: qk = 3,0 kN/m  
 
Limit State function 

Z(X) = θ1 W·fy  - θ2 (g + q) L2 /8 

In the following table all the variables are described by the mean, standard deviation 
and the distribution function, see also [5]: 
 
 

 
  

L  

g   q
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Variable Symbol Mean Standard deviation Distribution function 
Span L [m] 6 0 Deterministic 

Resistance modulus W [m3] 3 243 ·10-6 0 Deterministic 
Resistance model θ1   [-] 1 0,1 Lognormal 

Yield strength  fy  [MPa] 280 19,6 Lognormal 
Action effects model θ2 [-] 1 0,2 Lognormal 

Permanent load g [kN/m2] 0.007 0.007 ·0,1 Normal 
Variable load q [kN/m2] 0 .0008 0. 0008·0,6 Gumbel 

 
The following results are obtained using the attached MATHEMATICA notebook 

Form.nb and package Level II.m. 
 
Case a: Results 

Reliability index: β =  3,82 ;  Probability of failure: Φ(-β) = 6,67×10-5 
  
Variable θ1 fy θ2 g q 
Sensitivity coefficient -0,392 -0,275 0,778 0,304 0,270 
 

From the results can be seen that the reliability index is well adjusted, but also that the 
limit state is very sensitive to the actions model uncertainty (influence coefficient 0,778).  

 
Case b: 

Imagine that we can study more deeply the actions and we arrive to the conclusion 
that the mean and variances of the actions are the same as before, but now we have reduced 
the uncertainty model and we have now a coefficient of variation of 10%. 
 
Action effects model θ2 [-] 1 0,1 Lognormal 

 
Performing a new study with the new values we obtain:  

 
Reliability index: β =  5,04 ;  Probability of failure: Φ(-β) = 2,37×10-7 

  

Variable θ1 fy θ2 g q 

Sensitivity coefficient -0,505 -0,354 0,505 0,332 0,503 

 
We can see that the influence coefficients are more equilibrated, but now the 

reliability index is quite high.  
 
Case c:       

Perhaps we can reduce the steel profile. We can try with a smaller profile: 
New steel profile: IPE 220,  W= 252 cm3 
 

Now the results are the following: 
  
Reliability index: β =  3,74;  Probability of failure: Φ(-β) = 9,29×10-5 
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Variable θ1 fy θ2 g q 

Sensitivity coefficient -0,524 -0,367 0,524 0,383 0,411 
 
Example 3 

 Consider the slab of the example in Section 5 (see Figure 8). From the equilibrium 
consideration was obtained: 

 0,8 fc x b = As fy  

 As fy(d – 0,4 x) = M   

Using equilibrium conditions (30) and (31), and considering uncertainty of the models 
of resistances, θ1, and actions, θ2, the following formula for the limit state function can be 
derived: 

 g(X) =  ( ) 8/
2

2
21 Lqg

bf
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dfA
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ys
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The following table shows the variables that are considered in the study using the 
MATHEMATICA notebook FORM.nb: 

 
Variable Symbol Mean value Standard 

deviation 
Distribution 

function 
Resistance model θ1   [-] 1 0,1 Lognormal 

Reinforcement tensile strength fy [MPa] 560 30 Lognormal 
Reinforcement area As [m2] 0,00069 0,0000345 Normal 

Effective height d [m] 0,23 0,01 Normal 
Concrete compressive strength fc [MPa] 30 5,5 Lognormal 

Load model θ2   [-] 1 0,2 Lognormal 
Permanent load g [kN/m2] 7 0.7 Normal 
Imposed load q [kN/m2] 0,8 0,48 Gamma 

Span L [m] 6 - Deterministic 
 
 
Results: 

Reliability index: β =  3,56; Probability of failure: Φ(-β) = 1,87×10-4 

 

Variable θ1 As fy d fc θ2 g q 
Sensitivity coefficient -0,383 -0,193 -0,201 -0,177 -0,018 0,761 0,300 0,274 

From the results it is possible to draw the following conclusions: the reliability index 
is a little bit lower; the coefficient of influence of the concrete resistance, fc, is almost zero, it 
could be possible to consider it as deterministic without influencing the results; and the 
uncertainty in the actions has the maximum influence.  

 
Case b: 

The new study is performed considering reduced uncertainty in the load model as 
follows: 

 
Load model θ2   [-] 1 0,1 Lognormal 
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Results: 
Reliability index: β =  4,63;  Probability of failure: Φ(-β) = 1,82×10-6 

 

Variable θ1 As fy d fc θ2 g q 
Sensitivity coefficient -0.500 -0,259 -0,263 -0,235 -0,023 0,500 0,347 0,431 

 
Case c: 

Now the reliability index is a bit higher. Reducing the cross section of the reinforcing 
steel bars: 
 

Reinforcement area As [m2] 0,00059 0,00059×0,05 Normal 
Load model θ2   [-] 1 0,1 Lognormal 

 
Results: 

Reliability index: β =  3,86;  Probability of failure: Φ(-β) = 5,61×10-5 

 

Variable θ1 As fy d fc θ2 g q 
Sensitivity coefficient -0,504 -0,260 -0,266 -0,234 -0,020 0,504 0,368 0,401 
 
 

From both the examples can be seen that reducing the uncertainty in the model of 
actions, is possible to reduce the steel section without reducing (even increasing) the overall 
reliability. 

 
 

7 SYSTEM RELIABILITY 
 
7.1 General 

Even in the simplest case of one structural element: a beam or column, more than one 
ultimate limit state function has to be considered: failures at positive or negative moments or 
shear of the beam. In most cases, the structure has multiple elements what is called a 
'structural system'. 

The reliability of the system depends on the reliability of its elements: the effects of 
actions in each element depend on applied loads, loads and resistances may not be 
independent, there may be a correlation between the properties of the elements in different 
parts of the structure. Furthermore, there are limit states for the structure as a whole like the 
overall deflection or foundation settlement. 

When all the different failure modes are identified, a 'fault-tree' or an 'event-tree’ of all 
the failures modes can be established. 
 
Example 4 

Consider the simple portal frame of the following Figure 4 submitted to the horizontal 
and vertical loads Q. Assuming a plastic behaviour, the frame has three possible modes of 
collapse. In each path different plastic hinges will be formed: 

 
a) Sway mode: Plastic hinges formed at sections 1 and 3; 
b) Beam mode: Plastic hinges at sections 1, 2 and 3; 
c) Combined mode: Plastic hinges at sections 2 and 3. 
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1 2 3 

Q 
Q 

 
 
The failure in any path implies the failure of the structure and the event 'structural 

failure' will be the union of the all n failure modes (n = 3, in the example case). And therefore 
the probability of failure of the structure will be: 

 Pf =  P(FS) = P(F1»F2» ...»Fn) (38) 

where Fi is the event failure in mode i. For each mode m nodes or structural elements have to 
fail. So the probability of failure of each mode, Fi, will be: 

  Pf(Fi) = P(F1i…F2i… ...…Fmi)  (39) 
where Fji is the event failure of the j-th element or node in the i-th failure mode. To reach the 
collapse of the structure in the mode i, m elements or nodes must fail. 

In general the structure is idealized as a parallel system, a series system or a 
combination of both.   

 
7.2 Parallel systems 

In the parallel system are the elements so interconnected that the failure of one or 
more of the elements does not mean the failure of the whole structure. Such a structure is 
called a redundant structure. This redundancy can be active, when the redundant members can 
activate before the limit state of any member was reached, or passive, when the redundant 
members only act when a limit state is reached in some member. 

It should be taken into account that any hyperstatic structure is not necessary a parallel 
system: if the elements are brittle, the failure of any of them can lead to a new distribution of 
stresses such that new failures are reached immediately. 

 The failure of a pure parallel system with m components is given by: 

 Pf sys = P ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Fj  
m

1
I  = P ⎥

⎦

⎤
⎢
⎣

⎡ 0) < (Zj 
1
I
m

 (40) 

where Fj is event of the failure of the j-th component with Zj limit state function. Thus: 
 

 P(Fj) =P(Zj < 0) ≈ Φ(-β)  (41) 
The probability of failure of the system by FORM is given by: 

 Pf sys = Φm(- β ; ρ)  (42) 

where  Φm is the multi-dimensional standard normal distribution, β is the vector of the 
component reliability  indices and ρ the m×m correlation matrix of the reliability indices, 
given by 

 ρjk = ∑
i

αij αik ;            with  j, k = 1, 2, ... , m  (43) 

and αij is the sensitivity factor of the i-th variable in the j-th component limit state function. 

a b c
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It is a demanding task to calculate the probability of failure of the system. An upper 
bound of this probability can be obtained as: 

 pf sys = 
m

kj
Min

1, =
[ ]I )( kj FFP  (44) 

A simple approximation for only two elements: 

 pf sys = Φ(- β1) Φ(- β*
2);   with  β*

2 = (β2 - ρ β 1) / ρ 2
1−  (45)  

7.3 Series systems 
A series system is that the failure of any element leads to the collapse of the structure. 

It is called a 'weakest link'. Any statically determined structure is a series system. In a similar 
manner that was shown in the previous section, the failure probability in a pure series system 
with m components is given by: 

 C = P ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Fj  
m

1
U   (46) 

The probability of failure of the system given by FORM is: 

 Pf sys = 1- Φm( β ; ρ)  (47) 
Simple bound to this probability are given by: 

 [ ]≤)(
1 j

m
FPMax Pf sys ⎥⎦

⎤
⎢⎣
⎡∑≤

m
jFPMin

1
1),( . (48) 

These bounds are usually too wide. A method to find more precise bounds can be 
found in [11]. 
 
 
8  CONCLUDING REMARKS 
 

Elementary methods of structural reliability can be used to assess the reliability of 
fundamental cases of two random variables when the limit state function is formulated as the 
difference between the resulting structural resistance and load effect. Software products, 
usually based on the methods FORM and SORM, must be used in a general case of more 
basic variables. 

Basic principles of the reliability theory provide operational techniques that can be 
used for estimating the partial factors of basic variables. The assessment of various reliability 
measures in the new structural design codes is, however, partly based on historical and 
empirical experiences. Obviously the past experience depends on local conditions including 
climatic actions and traditionally used construction materials and, consequently, might be in 
different countries considerably diverse. That is why number of reliability elements and 
parameters in the present suite of European standards are open for national choice. 

MATHCAD sheets, EXCEL sheets and MATHEMATICA notebooks supplement the 
numerical examples and make it possible to recalculate similar examples of basic structural 
members exposed to common permanent and variable loads.  
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ATTACHMENTS 
 

1. MATHCAD SHEET "GammaRGQ.mcd" 
MATHCAD sheet "GammaRGQ.mcd" is intended for calculation of the partial 

factorsγR, γR and γR assuming selected theoretical models. 
 

2. MATHCAD SHEET "Prindex.mcd" 
MATHCAD sheet "Prindex.mcd" is intended for determining the reliability index 

from the failure probability. 
 

3. MATHCAD sheet "RCBeam.mcd" 
MATHCAD sheet "RCBeam.mcd" is intended for design of a reinforced concrete 

beam exposed to permanent and variable loads. 
 
4. MATHCAD sheet "RelRCB.mcd" 

MATHCAD sheet "RelRCB.mcd" is intended for reliability analysis of a reinforced 
concrete beam exposed to permanent and variable loads. 
 
5. EXCEL sheet "RCBeam.xls" 

EXCEL sheet "RCBeam.xls" is intended for design of a reinforced concrete beam 
exposed to permanent and variable loads. 
 
6. MATHEMATICA notebook "Fit_distribution.nb" 
 MATHEMATICA notebook "Fit_distribution.nb" is intended for fit selected 
theoretical models to experimental data. 
 
7. MATHEMATICA notebook "FORM.nb" 
 MATHEMATICA notebook "FORM.nb" is intended for reliability analysis of a 
structural member. 
 
8. MATLAB package "Level2.m" 
 MATLAB package "Level2.m" is intended for determining the reliability index using 
FORM method. 
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9. MATHCAD sheet "FORM2.mcd" 
MATHCAD sheet "FORM2.mcd" is intended for calculation of the reliability index β 

and failure probability assuming function g(X)= R - E = 0 assuming general three parameter 
lognormal distribution LN(μ,σ,α) of E and R. 

 
10.  MATDCAD sheet "FORM7.mcd" 

MATHCAD package "FORM7.mcd" is intended for calculation of the reliability index 
β and failure probability assuming a non-linear limit state function g(X) and general three 
parameter lognormal distribution LN(μ,σ,α) for basic variables. 

 
11. EXCEL sheet "FORM7.xls" 

MATHCAD package "FORM7.mcd" is intended for calculation of the reliability index 
β and failure probability assuming a non-linear limit state function g(X)   and general three 
parameter lognormal distribution LN(μ,σ,α) of basic variables  

 
12. MATLAB function "FORM7.m" 

MATLAB package "FORM7.m" is intended for determining the probability of failure 
pf, assuming a pre-defined limit state function of seven basic variables. 

 
13. MATLAB function "Lnden (x, mu, sigma,sk)" 

MATLAB function "Lndens" is intended for calculation of the probability density 
function of three-parameter lognormal distribution. The function is called by the function 
FORM7 using command “Lndens(ske,me,se)”, and returns the value of probability density 
function. 

 
15. MATLAB function " Lndist (x, mu, sigma,sk)" 

MATLAB function "Lndist" is intended for calculation of the distribution function of 
three-parameter lognormal distribution. The function is called by the function FORM7 using 
command “Lndist(skr,mr,sr),” and returns the value of the distribution function. 
 
15.  MATLAB function “Ndens (x, mu, sigma)” 

MATLAB function "Ndens" evaluates the one-dimensional normal density function. 
The function is called by the function FORM7 using command “Ndens(x)” (or 
“Ndens(x,mu,sigma)” or Ndens(x,mu)”), and returns the value of the inverse distribution 
function. 

 
16. MATLAB function "Ndinv (p, mu, sigma)" 

MATLAB function "Ndinv" calculates the inverse distribution function of the normal 
distribution (determining the reliability index beta). The function is called by the function 
FORM7 using command “Ndinv(p)” (or “Ndinv(p,mu,sigma)” or Ndinv(p,mu)”), and returns 
the value of the inverse distribution function. 

 
17. MATLAB function "Ndist (x, mu, sigma)" 

MATLAB function "Ndist" evaluates the one-dimensional normal distribution 
function. The function is called by the function FORM7 using command “Ndist(x)” (or 
“Ndist(x,mu,sigma)” or Ndist(x,mu)”), and returns the value of the inverse distribution 
function. 
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Attachment 1 - MATHCAD sheet GammaRGQ.mcd 

 

ξkn 0.1( ) 0.835=

Lognormal distribution ξkln V( )
exp k−( ) ln 1 V2+( )⋅⎡⎣ ⎤⎦

1 V2+

:= ξkln 0.1( ) 0.844=

Gumbel distribution
ξkgum V( ) 1 V 0.45 0.78ln ln 0.98( )−( )+( )⋅−:= ξkgum 0.35( ) 1.908=

3 Design values (relative values related to the mean, ξd =  xd / μx )

Normal distribution ξdn β V,( ) 1 βR β( ) V⋅−( ):= ξdn 3.8 0.1,( ) 0.696=

Lognormal distribution ξdln β V,( ) exp βR β( )−( ) ln 1 V2+( )⋅⎡⎣ ⎤⎦

1 V2+

:= ξdln 3.8 0.1,( ) 0.735=

Gumbel distribution ξdgum β V,( ) 1 V 0.45 0.78ln ln 1 pnorm βE β( ) 0, 1,( )−( )−( )+( )⋅−:=

ξdgum 3.8 0.1,( ) 1.387=

4 GammaR for resistance assuming normal and lognormal distribution 

γRn β V,( ) ξkn V( )
ξdn β V,( ):= γRln β V,( ) ξkln V( )

ξdln β V,( ):= γRn 3.8 0.1,( ) 1.2=

0 2 4
0.5

1

1.5

γRn β 0.05,( )

γRn β 0.1,( )

γRn β 0.15,( )

β

0 2 4
0.5

1

1.5

γRln β 0.05,( )

γRln β 0.1,( )

γRln β 0.15,( )

β

GammaR, gammaG and gammaQ
assuming theoretical model 

MATHCAD sheet for determination of partial factors γR, γG and γQ.

Study parameters: reliability index and coefficient of variation: β 0 0.1, 5..:= V 0 0.1, 0.5..:=

1 Coeficients and factors used in EN 1990 
Coefficient for 5% fractile k 1.65:= Standardised normal variable 

Coefficient for 0,1 % fractile d 3.09:= Not dicrectly used in this sheet

Sensitivity factors: αR 0.8:= αE 0.7−:= FORM factors assumed in EN 1990

Reduced β values: βR β( ) β αR⋅:= βE β( ) β αE⋅:= Basic reliability index β = 3.8

2 Characteristic values (relative values related to the mean, ξ k =  xk / μx)

Normal distribution ξkn V( ) 1 k V⋅−( ):= Check: 
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5 GammaG for permanent load assuming normal distribution

γGn β V,( ) 1 βE β( ) V⋅−:=

γRn 3.8 0.1,( ) 1.2=

0 2 4
1

1.2

1.4
γGn β 0.05,( )

γGn β 0.1,( )

γGn β 0.15,( )

β

0 0.2 0.4
1

2γGn 3.3 V,( )

γGn 3.8 V,( )

γGn 4.3 V,( )

V

6 GammaQ for variable load assuming Gumbel distribution

Partial factor γQ: γQgum β V,( ) ξdgum β V,( )
ξkgum V( )

⎛
⎜
⎝

⎞
⎟
⎠

:= ξdgum 3.8 0.5,( ) 2.937=

γQgum 3.8 0.5,( ) 1.279=

2 3 4 5

1

2

γQgum β 0.2,( )

γQgum β 0.3,( )

γQgum β 0.4,( )

β

0 0.2 0.4
1

1.2

1.4
γQgum 3.3 V,( )

γQgum 3.8 V,( )

γQgum 4.3 V,( )

V

Note. Calculation procedures applied in this sheet for determination of Gamma
factors do not take into account model uncertainties of relevant variables. An 
additional magnifying factor of a magnitude from 1.05 to 1.10 is considered in 
Eurocode recommendations. 

MH, 21.2.2003
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Attachment 2 - MATHCAD sheet PrIndex..mcd 
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Attachment 3 - MATHCAD sheet RCBeam.mcd 
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Attachment 4. MATHCAD sheet RelRCB.mcd 
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Attachment 5. EXCEL sheet RCBEAM.XLS 
 

 

REINFORCED CONCRETE BEAM OR SLAB 
Partial factor or global safety factor only 
Bending moment 
L[m]= 6,00
gk[kN/m]= 7,00 gammaG= 1,35
qk[kN/m]= 3,00 gammaQ= 1,5
ME[kNm]= 62,78

Rectangular cross-section 
Dimensions b= 1 d= 0,17

Factors γ c= 1,5 αcc= 1 γs= 1,15
Concrete fck [MPa] = 20 fcd=acc*fck/γc= 13,3 fctm= 2,2
Rebars fyk [MPa] = 500 fyd=fyk/γσ= 434,8
Reratio ρ min [%] = 0,130 

ξ =x/d< ξ max 0,45 
Estimate z ~ 0,9 d 

As~Md/(z*fyd)= 0,000944
A[m^2]= 0,000933 

ρ  [%] = 0,55 
ρ  > ρ min ? PRAVDA 
ξ =x/d= 0,22 

ξ < ξ max? PRAVDA ρ  max[%] = 1,10
General Table 

m = Md/ Reratio  ρ ξ =x/d z/d = 1 - 0,4*ξ εs As Md 
/(b*d^2*fcd)  [%]  [%] m^2 [kNm]

0,00 0,00000 0,00 1,00 - 0,00000 0,0
0,05 0,15737 0,06 0,97 5,11 0,00027 19,3
0,10 0,32376 0,13 0,95 2,30 0,00055 38,5
0,15 0,50091 0,20 0,92 1,36 0,00085 57,8
0,20 0,69124 0,28 0,89 0,89 0,00118 77,1
0,25 0,89821 0,37 0,85 0,61 0,00153 96,3
0,30 1,12714 0,46 0,82 0,41 0,00192 115,6
0,35 1,38698 0,57 0,77 0,27 0,00236 134,9
0,40 1,69521 0,69 0,72 0,16 0,00288 154,1

0,0 
0,2 
0,4 
0,6 
0,8 
1,0 
1,2 
1,4 
1,6 
1,8 

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 
M/(fcd*b*d^2)

 d

 x

 b

  ε c = 0,35%   

εs

 As

g

L

q 

011 , 0 , 0013 , 0 , 2 1 1 maxmin2
cd yd

cds ≈ ≈ ⎟ 
⎟ 
⎠ 

⎞ 
⎜ 
⎜ 
⎝ 

⎛ 
− − = = ρ ρ ρ 

bd f 
M 

f 
f 

bd 
A E



Annex B –Elementary methods of structural reliability II 

 B - 33  

 
 

 

REINFORCED CONCRETE BEAM OR SLAB
Partil factor or global safety factor method
Bending moment
L[m]= 6.00
gk[kN/m]= 7.00 gammaG= 1.35
qk[kN/m]= 3.00 gammaQ= 1.5
ME[kNm]= 62.78

Rectangular cross-section
Dimensions b= 1 d= 0.17

Factors γc= 1.5 αcc= 1 γs= 1.15
Concrete fck [MPa] = 20 acc*fck/γc= 13.3 fctm= 2.2
Rebars fyk [MPa] = 500 yd=fyk/γσ= 434.8
Reratio ρmin [%] = 0.130

ξ=x/d< ξmax 0.45
Estimate z ~ 0,9 d

As~Md/(z*fyd)= 0.000944
A[m^2]= 0.000933

ρ [%] = 0.55
ρ >ρmin ? PRAVDA
ξ=x/d= 0.22

ξ<ξmax? PRAVDA ρ max[%] = 1.10
General Table

m = Md/ Reratio ρ ξ=x/d /d = 1 - 0,4* εs As Md 
/(b*d^2*fcd)  [%]  [%] m^2 [kNm]

0.00 0.00000 0.00 1.00 - 0.00000 0.0
0.05 0.15737 0.06 0.97 5.11 0.00027 19.3
0.10 0.32376 0.13 0.95 2.30 0.00055 38.5
0.15 0.50091 0.20 0.92 1.36 0.00085 57.8
0.20 0.69124 0.28 0.89 0.89 0.00118 77.1
0.25 0.89821 0.37 0.85 0.61 0.00153 96.3
0.30 1.12714 0.46 0.82 0.41 0.00192 115.6
0.35 1.38698 0.57 0.77 0.27 0.00236 134.9
0.40 1.69521 0.69 0.72 0.16 0.00288 154.1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
M/(fcd*b*d^2)

 

 d 

 x 

 b 

 εc=0,35% 

 εs 
 As 

g  

L  

q  

011,0,0013,0,
2

11 maxmin2
cdyd

cds ≈≈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−== ρρρ

bdf
M

f
f

bd
A E
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Attachment 6 – MATHEMATICA notebook Fit_distribution.nb 
 

Fit data to distribution functions  
Statistical characterization  of data.  It  takes the following  steps:
1- Obtain  the   characteristics  of  datas:  number  of elements,  mean,  variance,  standard   deviation  and  coefficeint  of
variation
2- By the method  of moments  obtain the indicated  distribution parameters
3-Manually  the  values  of the  steps in the  hystogram are  introduced,  and  then  perform  the  Chi  square  test of goodness
of fit  and  draw  the hystogram  and  the adjusted  density distribution  function.  Gives two values of Confidence  level,  the
first  one  corresponding  to  a  degrees  of freedom  equal  number  of intervals  minus  1 and  the  second  one number  of
intervals -3.
4-Draw  the data  points asignig  a probability of p =m/(n+1).  m = number  of order,  n= number  of data  and  the  cumula -
tive distribution function,  both in real  scale  and  double logarithmic  scale (i.e.,   z = -Log(-Log  x))

Distributions defined:  normal  or gauss,  lognormal  or  lognor,  gamma,  weibull,  and extrems  or gumbel

Last updated  2 May 2004  

Data 
Packages needed 
 
$TextStyle = 9FontSize → 14, FontFamily .> "Arial " <; 
Data 
data = {1.3, 4.3, 1.3, 5.4, 3.7, 3.8, 4., 2.9, 3.2, 4.5, 4., 3.4, 2.4, 
1.8, 1.7, 2.2, 4.1, 2.6, 4.1, 3.3, 3.5, 3.7, 2.4, 2.8, 2.5, 3., 3.3, 2.6, 
2.9, 2.4, 2.6, 2.9, 2.8, 3.1, 3.2, 3.4, 3.5, 3.2, 3.3, 3.};  
distributions = 9"normal","lognormal", "gamma"<;
numdistributions = LengthAdistributionsD;  
Descriptive statistic 
ndata = LengthAdataD
mean = MeanAdataD
variance = VarianceAdataD
deviation = StandardDeviationAdataD

coefvariation =
deviation
¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

mean  
40  
3.1025  
0.718199  
0.847466  
0.273156  

Distribution  functions  
Parameters of distribution  
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DoBIfBdistributionsPiT === "normal"……distributionsPiT === "gauss",
par1 = mean;
par2 = deviation;
distAiD = NormalDistributionApar1, par2D,

IfBdistributionsPiT === "lognormal"……distributionsPiT === "lognor",

w =
mean2 + deviation2
¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

mean2
;

par1 = .5LogB
mean2
¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
w

F;

par2 = è !!!!!!!!!!!!!!!!!LogAwD ;
distAiD = LogNormalDistributionApar1, par2D,

IfBdistributionsPiT === "gamma",

par1 =
mean2

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
deviation2

;

par2 =
deviation2
¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

mean
;

distAiD = GammaDistributionApar1, par2D,
IfBdistributionsPiT === "weibull",

par1 = a ê.

FindRootB
mean2

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
deviation2

==
GammaA1 + 1¢¢¢¢a D

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
GammaA1+ 2¢¢¢¢

a
D. GammaA1+ 1¢¢¢¢

a
D
2
, 9a, .1<

par2 =
mean

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
GammaB1+ 1¢¢¢¢¢¢¢¢¢¢par1 F

;

distAiD = WeibullDistributionApar1, par2D,
IfBdistributionsPiT === "extrems"……distribucionesPiT === "gumbel",

par1 = media. NB
è !!!!
6 EulerGamma deviation

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
π

F;

par2 = NB
deviation

è !!!!
6

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
π

F;

distAiD = ExtremeValueDistributionApar1, par2D,
PrintA"Error: the distribution ", i, " H", ditributionsPiT, "is not defined
BreakADFFFFF, 9i, numdistributions<F

Quantiles 
DoA

PrintAdistAiDD;
PrintA NAQuantileAdistAiD, 0.5D, 4D, " ",

NAQuantileAdistAiD, 0.75D, 4D, " ",
NAQuantileAdistAiD, 0.9D, 4D, " ",
NAQuantileAdistAiD, 0.95D, 4D, " ",
NAQuantileAdistAiD, 0.99D, 4D, " ",
NAQuantileAdistAiD, 0.999D, 4D, " ",
NAQuantileAdistAiD, 0.9999D, 4DD;

PrintA" "D,
9i, 1, numdistributions<D  

NormalDistributionA3.1025, 0.847466D  
3.1025 3.67411 4.18857 4.49646 5.074 5.72137 6.25424  
 

LogNormalDistributionA1.09623, 0.268257D  
2.99285 3.58645 4.22075 4.65281 5.58612 6.85654 8.11633  
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GammaDistributionA13.4023, 0.23149D  
3.02569 3.62454 4.226 4.61518 5.4059 6.38894 7.27698  
 

Goodness  of Fit Test   
xmax = 1.5MaxAdataD;
xmin = .9 MinAdataD;  
Defining  the intervals 
Adjust the intervals  length  in order  to obtain  more  or less the  same  number  of samples  in each  interval  (minimum  
samples)  
intervals = 92.3, 2.7, 3, 3.3, 3.7, 4.1, xmax<;
count = RangeCountsAdata, intervalsD  
95, 7, 5, 6,7, 5, 5, 0<  
frecuencies = DropAcount, .1D; 
numintervals = LengthAintervalsD;
PrependToAintervals,xminD;  
total = Plus@@frecuencies; 
hystogr = 99intervalsP1T,0.<<; 
Draws  the histogram 

DoBAppendToBhystogr, 9intervalsPiT,
frecuenciesPiT

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
total HintervalsPi+1T .intervalsPiTM

=F;

AppendToBhystogr, 9intervalsPi +1T,
frecuenciesPiT

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
totalHintervalsPi +1T .intervalsPiTM

=F,

9i,numintervals<F
AppendToAhystogr, 9intervalsPnumintervals +1T, 0.<D;  
hystogram = ListPlotAhystogr, PlotJoined → True, DisplayFunction → IdentityD; 
Performs of Chi square test  and draw the density function 
DoBestadW = 0.;

DoBnj = frecuenciesPjT;
ej = HCDFAdistAiD,intervalsPj +1TD. CDFAdistAiD,intervalsPjTDM total;

estadW = estadW +
Hnj. ejM2.
¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

ej
,

9j,numintervals<F;
alfa = H1.CDFAChiSquareDistributionAnumintervals .1D, estadWDM 100.;
alfa1 = H1.CDFAChiSquareDistributionAnumintervals .3D, estadWDM 100.;
PrintAdistAiDD;
PrintA"Estimator W = ", estadW," Degrees of freedom = ", numintervals.1D;
PrintA"Confidence level between ",alfa1, " and ", alfa, " %"D;
PrintA" "D;
fdensity = PlotAPDFAdistAiD,xD, 9x,intervalsP1T +.001, intervalsPnumintervals+

DisplayFunction → IdentityD;
ShowA9hystogram ,fdensity<,

PlotLabel → distributionsAAiDD,
DisplayFunction → $DisplayFunctionD,

9i, numdistributions<F;

NormalDistributionA3.1025, 0.847466D  
Estimator W = 0.635298 Degrees of freedom = 6  
Confidence level between 95.9062 and 99.5782 %  
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0.1

0.2

0.3

0.4

0.5
normal

 
LogNormalDistributionA1.09623, 0.268257D  
Estimator W = 1.31828 Degrees of freedom = 6  
Confidence level between 85.8267 and 97.064 %  
 

2 4 6 8

0.1

0.2

0.3

0.4

0.5
lognormal

 
GammaDistributionA13.4023, 0.23149D  
Estimator W = 1.00414 Degrees of freedom = 6  
Confidence level between 90.9168 and 98.5455 %  
 

2 4 6 8

0.1

0.2

0.3

0.4

0.5
gamma

 
Distribution  functions   
Distribution of the data points  
datosord = SortAdataD; 
probab = TableB

i
¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
ndata+ 1.

, 9i, 1,ndata<F;
 

loglogprob = .LogA.LogAprobabDD; 
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points1 = 99datosordP1T, probabP1T<<; 
points2 = 99datosordP1T, .LogA.LogAprobabP1TDD<<; 
DoApoints1 = AppendToApoints1, 9datosordPiT, probabPiT<D, 9i, 2,ndata<D; 
DoApoints2 = AppendToApoints2, 9datosordPiT, loglogprobPiT<D, 9i, 2, ndata<D; 
p1 = ListPlotApoints1,

Prolog → 9PointSizeA.02D<,
DisplayFunction → Identity, PlotRange → AllD; 

pp3 = ListPlotApoints2,
Prolog → 9PointSizeA.02D<,
DisplayFunction → Identity,
PlotRange → AllD;  

p3 = ShowApp3,
Prolog → 9PointSizeA.02D<,
DisplayFunction → IdentityH∗,
AxesOrigin→90.,.1.5<,
Ticks→9Automatic,

99..834,".1"<,9.366,".5"<,92.25,".9"<,
92.97,".95"<,94.6,".99"<<<∗M D;  

Draws in  normal and double-logaríthmic scale 
DoAfdistrib1AiD = PlotACDFAdistAiD, xD, 9x,xmin, xmax<,

PlotStyle → 9DashingA9.008 i1.5, .02i<D<,
DisplayFunction → IdentityD,

9i,1, numdistributions<D;  
DoAfdistrib2AiD = LogPlotACDFAdistAiD,xD, 9x,xmin, xmax<,

PlotStyle → 9DashingA9.008 i1.5, 0.02i<D<,
DisplayFunction → IdentityD,

9i,1, numdistributions<D;  
DoAfdistrib3AiD = PlotAEvaluateA.LogA.LogACDFAdistAiD, xDDDD, 9x, xmin, xmax<,

PlotStyle → 9DashingA9.008 i1.5, 0.02i<D<,
DisplayFunction → IdentityD,

9i, 1, numdistributions<D;  
ShowA9p1, fdistrib1A1D, fdistrib1A2D, fdistrib1A3D<,

AspectRatio → 1.2,
GridLines → 9None, 90.95<<,

DisplayFunction → $DisplayFunctionD;  
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0.2

0.4

0.6

0.8

1

 
ShowA9p3, fdistrib3A1D, fdistrib3A2D, fdistrib3A3D<,

AspectRatio → 1.2,
AxesOrigin → 9xmin, .3<,
PlotRange → 99xmin,xmax<, 9.3,7<<,

GridLines → 9None, 92.97,6.9<<,
Ticks → 9Automatic,

99.1.93, ".001"<, 9.1.527, ".01"<, 9..834,".1"<, 9.366, ".5"<,
92.25, ".9"<, 92.97, ".95"<, 94.6,".99"<, 96.9, ".999"<
<<, H∗ 99.21,".9999"<∗M

DisplayFunction → $DisplayFunctionD;  

2 3 4 5 6 7 8

.001
.01
.1

.5

.9
.95

.99

.999
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Attachment 7 – MATHEMATICA notebook “FORM.nb” 
 

FORM 
This  notebook compute  the  reliability  index,  failure  probability and  influence  factors  in  level  II,  using  the  package
"Reliability L̀evel2".  In  this package  those  variables  are  determined  through  the  algorithm  "Normal  Tail  Approxima
tion" as is explained  in the  book of Madsen  et  al.:  Methods  of Structural  Safety,  pp. 94 and  following.
The failure  function  of the  limit  state  must  be  defined  and,  also,  the  independent  basic  variables  given  by a  matrix
with a row for  each  variable  with the kind of distribution function  assumed,  the  mean  and the  standard  deviation.
The following  names  of distribution functions  are  implemented:

"normal"  or "gauss",
"lognormal"  or "lognor",
"gamma",
"logistic",
"uniform",
"weibull",   and
"extremes"  or "gumbel".

The iterations  defined  in  the loop of the  algorithm  is stopped  when  the differences  between  two consecutive values  i
less than the  error  defined.  
Needs["Reliability`Level2`"] 
LImit State functio 
Define  the limit  state  function  
gAz_D :=
zAA1DD HzAA2DD∗zAA3DDM∗HzAA4DD .HHzAA2DD∗ zAA3DDMêH2∗zAA5DD∗ bMMM.
zAA6DD HzAA7DD +zAA8DDM∗L2 ê8  

Deterministic variable 
b = 1;
L = 6.; 
Ramdom variable 
Define the variables  matrix:  distribution function,  mean  and  standard  deviation 
m = {{"lognormal",  1,.1},

{"normal",  0.00082  ,0.00082*0.05},   
 {"lognormal",  560,560*0.054},   
 {"normal",0.22,0.01}  ,
 {"lognormal",  30,30*0.167},    
 {"lognormal",  1.2,.18},
 {"normal",  0.007,0.007*.1},    
 {"gumbel",  .0008,.0008*0.6   } 
};

 
Failprob[m,g] 
Obtain the  reliability index beta  ; the failure  probabilities; and the sensitivity factor for each variable  
beta = 3.80004, PhiH.betaM = 7.23367×10.5 H 5 iterationsM  
alpha = 9.0.442388, .0.223455, .0.230898, .0.216807, .0.0258585, 0.661535, 0.334996, 0.321747<  
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Attachment 8 – MATLAB package “Level2.m” 
 
 
BeginPackage["Reliability`Level2`"] 
 
Needs["Statistics`ContinuousDistributions`"] 
 
Failprob::usage = 
  "Work out the Hassofer-Lind  reliability index and the  
  coefficients of sensitivity using the algorithm  Norman Tail 
  Approximation given  in STRUCTURAL SAFETY  by 
   Madsen et al., p94 . It admits a maximum of 10 variables  " 
 
Characterization::usage = 
 " Characterize the distribution functions given by a matrix " 
 
Factores::usage = 
 " Gives the sensitivity factors" 
 
Begin["`Private`"] 
 
Off[Part::partw] 
 
Grad[s_, var_List] := D[s, #]& /@ var   (* Definition of Grad*) 
invnormal[y_]:=Sqrt[2.] InverseErf[2y-1]; 
 
Failprob[matrix_,g_]:=   
Module[ 
 { n=First[Dimensions[matrix]], 
  znew=muiter=Transpose[matrix][[2]], 
   sigmaiter=Transpose[matrix][[3]], 
  distnor=NormalDistribution[0.,1.], 
   error= 10.^(-3),   (* error admited *) 
   betanterior=0, 
   ind=0, 
   z,aux,gradiente,gradpart, ceta,muzeta,sigmazeta,alpha,beta,prob   }, 
 z=Array[a,n]; 
 gradiente=Grad[g[z],z] ; 
 Characterization[matrix];    (* Characterization of the variables *) 
 Do[                                        (*  iterative cycle *) 
   ziter=znew; 
   partic=Take[{z[[1]]->ziter[[1]],z[[2]]->ziter[[2]],z[[3]]->ziter[[3]], 
     z[[4]]->ziter[[4]],z[[5]]->ziter[[5]],z[[6]]->ziter[[6]], 
    z[[7]]->ziter[[7]],z[[8]]->ziter[[8]],z[[9]]->ziter[[9]], 
    z[[10]]->ziter[[10]]},n]; 
           (*  iteration values *) 
    Do[                
   aux = invnormal[CDF[dist[i],ziter[[i]]]]; 
   sigmaiter[[i]] = PDF[distnor,aux]/PDF[dist[i], ziter[[i]] ]; 
   muiter[[i]] = ziter[[i]] - aux sigmaiter[[i]], 
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     {i,n}];  
   gradpart=gradiente/.partic; 
   ceta=gradpart . ziter; 
   muzeta=gradpart . muiter; 
   sigmazeta=Sqrt[(gradpart^2).(sigmaiter^2)]; 
   alpha = -(gradpart*sigmaiter)/sigmazeta;  
   beta = -(ceta-g[ziter]-muzeta)/sigmazeta;  
   znew = muiter + beta(alpha * sigmaiter); 
   prob=CDF[distnor,-beta]; 
   ind++ 
   If[Abs[beta-betanterior] < error,Break[],betanterior=beta],   
 {10}];  
 
 Print["beta = ",N[beta,5], ", Phi(-beta) = ",ScientificForm[prob]," ( \ 
",ind," iterations)" ]; 
 Print["alpha = ",N[alpha,3] ] 
] 
 
Factores:= 
Module[ 
 {alpha,znew,muiter,sigmaiter}, 
 Print["alpha = ",N[alpha,4]]; 
 Print["znew = ",N[znew,4]]; 
 x=(znew-muiter)1./sigmaiter; 
 Print["x = ",N[x,4]] 
] 
 
Characterization[matrix_]:= 
Module[ 
 {w,par1,par2,a, 
 n=First[Dimensions[matrix]] 
 }, 
 Do[    
 If[matrix[[i,1]]==="normal"||matrix[[i,1]]==="gauss", 
   par1=matrix[[i,2]]; 
   par2=matrix[[i,3]]; 
  dist[i]=NormalDistribution[par1,par2], 
 If[matrix[[i,1]]==="lognormal"||matrix[[i,1]]==="lognor", 
   w=(matrix[[i,2]]^2 + matrix[[i,3]]^2)/matrix[[i,2]]^2; 
   par1=.5Log[matrix[[i,2]]^2/w]; 
   par2=Sqrt[Log[w]]; 
  dist[i]=LogNormalDistribution[par1,par2], 
 If[matrix[[i,1]]==="gamma", 
   par1=matrix[[i,2]]^2/matrix[[i,3]]^2; 
   par2=matrix[[i,3]]^2/matrix[[i,2]]; 
  dist[i]=GammaDistribution[par1,par2],   
 If[matrix[[i,1]]==="logistic", 
   par1=matrix[[i,2]]; 
   par2=matrix[[i,3]] Sqrt[3.]/Pi; 
  dist[i]=LogisticDistribution[par1,par2],     
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 If[matrix[[i,1]]==="uniform", 
   par1=matrix[[i,2]]-Sqrt[3.] matrix[[i,3]] ; 
   par2=matrix[[i,2]]+Sqrt[3.] matrix[[i,3]] ; 
  dist[i]=UniformDistribution[par1,par2],     
 If[matrix[[i,1]]==="weibull", 
   par1=a /. FindRoot[ matrix[[i,2]]^2/ matrix[[i,3]]^2== 
        Gamma[1+1/a]/(Gamma[1+2/a]-
Gamma[1+1/a]^2),{a,.1}]; 
   par2=matrix[[i,2]]/Gamma[1+1/par1]; 
  dist[i]=WeibullDistribution[par1,par2], 
 If[matrix[[i,1]] === "extremes" || matrix[[i,1]] ==="gumbel", 
   par1 = matrix[[i,2]] - N[(Sqrt[6]*EulerGamma*matrix[[i,3]])/Pi]; 
   par2 = N[matrix[[i,3]]*Sqrt[6]/Pi];  
  dist[i] =  ExtremeValueDistribution[par1, par2], 
 Print["Error: the distribution ", i ," (",matrix[[i,1]], 
  ") is not defined. "]; 
   Return[]]]]]]]], 
 {i,n}]  
  
 ] 
  
 End[] 
 
 
EndPackage[]\.1a 
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Attachment 9 – MATHCAD sheet “FORM2.mcd” 
MATHCAD sheet "FORM2.mcd", FORM for g(X)= R - E = 0 assuming
general three parameter lognormal distribution LN(μ,σ,α) of E and R 

1. Parameters for E and R: Highlighted regions μE 50:= wE 0.2:= αE 1.14:= σE wE μE⋅:=

Default distribution of R - two parameter lognormal μR 100:= wR 0.1:= αR 3 wR⋅ wR
3

+:= σR wR μR⋅:=

2. Parameter C and skewness α:
Check: Distribution parameter C

given by the skewness α: C α( )

3
α

2 4+ α+

3
α

2 4+ α−−

3 2
:=

C 0( ) 0=
Distribution bound x0
(μ - 6 σ for zero α ): x0 μ σ, α,( ) μ

σ

C α( )
− α 0≠if

μ 6σ− otherwise

:= x0 μR σR, αR,( ) 8.527− 10 14−
×=

x0 μE σE, αE,( ) 22.522=

Transformation of parametersm σ α,( ) ln C α( )( )− ln σ( )+ 0.5( ) ln 1 C α( )
2

+( )⋅−:= s α( ) ln 1 C α( )
2

+( ):=

3. Probability density of E and R (for any α):
φE x( ) dlnorm sign αE( ) x x0 μE σE, αE,( )−( )⋅ m σE αE,( ), s αE( ),[ ] αE 0≠if

dnorm x μE, σE,( ) αE 0=if

:=

φR x( ) dlnorm sign αR( ) x x0 μR σR, αR,( )−( )⋅ m σR αR,( ), s αR( ),[ ] αR 0≠if

dnorm x μR, σR,( ) αR 0=if

:=

4. Distribution function of E and R (for any α)  :
Φ E x( ) 0.5 1 sign αE( )−( )⋅ sign αE( ) plnorm sign αE( ) x x0 μE σE, αE,( )−( )⋅ m σE αE,( ), s αE( ),[ ]+ αE 0≠if

pnorm x μE, σE,( ) αE 0=if

:=

Φ R x( ) 0.5 1 sign αR( )−( )⋅ sign αR( ) plnorm sign αR( ) x x0 μR σR, αR,( )−( )⋅ m σR αR,( ), s αR( ),[ ]+ αR 0≠if

pnorm x μR, σR,( ) αR 0=if

:=

5. FORM iteration process:Guess values:xE μE 0.005 μR μE−( )⋅+:= xR xE:= Number of iterations n 1 4..:=

β n xR xR←

xE xE←

σRe
dnorm qnorm Φ R xR( ) 0, 1,( ) 0, 1,( )

φR xR( )
←

μRe xR σRe qnorm Φ R xR( ) 0, 1,( )⋅−←

σEe
dnorm qnorm Φ E xE( ) 0, 1,( ) 0, 1,( )

φE xE( )
←

μEe xE σEe qnorm Φ E xE( ) 0, 1,( )⋅−←

β
μRe μEe−

σRe
2

σEe
2

+( )0.5
←

aR
σRe−

σRe
2

σEe
2

+( )0.5
←

aE
σEe

σRe
2

σEe
2

+( )0.5
←

xR μRe aR β⋅ σRe⋅+←

xE μEe aE β⋅ σEe⋅+←

i 1 n..∈for

β

:= β n

3.304
2.904

2.904
2.904

=

pf pnorm β− 0, 1,( ):=

pf n
-44.77·10
-31.843·10
-31.844·10
-31.844·10

=

1 2 3 4
2.8

3

3.2

3.4

β n

n  
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Attachment 10 – MATHCAD sheet “FORM7.mcd” 
MATHCAD sheet "FORM7" for calculation of the reliability index β and

failure probability assuming a non-linear limit state function 
g(X) = a0 + a1*X1( a2*X2 + a3*X3) + a4*X4 (a5*X5+a6X6+a7X7)

  and general three parameter lognormal distribution LN(μ,σ,α) of basic
variables X1, X2, X3, X4, X5, X6 and X7

A General three-parameter lognormal distribution for any α
1. Parameter C and skewness  α :

Check: 
Distribution parameter C
given by the skewness α: C α( )

3
α

2
4+ α+

3
α

2
4+ α−−

3 2
:= C 0( ) 0=

Distribution bound x0
(μ - 6 σ for zero α ):

x0 μ σ, α,( ) μ
σ

C α( )− α 0≠if

μ 6σ− otherwise

:= x0 0 1, 1,( ) 3.1038−=

2. Probability density φ  and distribution function Φ (for any  α ): 
Standardised variable: u x μ, σ,( ) x μ−

σ
:= Transformed standardised variable:

uu x μ, σ, α,( )
ln u x μ, σ,( ) 1

C α( )+⎛⎜
⎝

⎞⎟
⎠

ln C α( ) 1 C α( )2
+⋅

⎛
⎝

⎞
⎠+

sign α( ) ln 1 C α( )2
+( )⋅

α 0≠if

u x μ, σ,( ) otherwise

:=

uu 50 50, 10, 0,( ) 0=

Density probability function:

φ x μ, σ, α,( ) dnorm uu x μ, σ, α,( ) 0, 1,( )

σ u x μ, σ,( ) 1
C α( )+⋅ ln 1 C α( )2

+( )⋅

α 0≠if

dnorm uu x μ, σ, α,( ) 0, 1,( )
σ

otherwise

:= φ 50 50, 1, 0,( ) 0.3989=

Distribution function: Φ x μ, σ, α,( ) pnorm uu x μ, σ, α,( ) 0, 1,( ):= Φ 100 100, 10, 0,( ) 0.5=

B FORM method for determination of the reliability index β and probability pf  
 Coefficients a0, a1, a2, a3, a4, a5, a6 and a7 of the limit state functions and 

 Input parameters for basic variables {X}={X1, X2, X3, X4, X5, X6 and X7}  

Three parameter
lognormal distribution
LN(μ,σ,α) for any α, if
α= 0 then the normal
distribution is used .
When X1 and X4 are
model uncertainties
then LN(μ,σ) is used. 

i 1 7..:=

Index

0

1

2

3

4

5

6

7

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:= a

0.

1

1

1

1−

1

1

1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:= μ

0

1.

100

10

1

50

10

0.01

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:= σ

1

0.05

10

1

0.05

10

5

0.01

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:= α

0

0.15

0.301

0.301

0.15

0.608

1.14

0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:= x0i x0 μi σi, αi,( ):=

x01 8.3195− 10 4−×=

x02 8.5265− 10 14−
×=

Check of the bounds x03 8.8818− 10 15−×= x04 8.3195− 10 4−×= x05 0= x06 3.7388−= x07 0.05−=

The check of the
initial gues values 

xi μi:= x1

a0 a4 x4⋅ a5 x5⋅ a6 x6⋅+ a7 x7+( )⋅+⎡⎣ ⎤⎦−

a1 a2 x2⋅ a3 x3⋅+( )⋅
:= x1 0.5455=

187
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4. FORM iteration procedure: Probability of failure pf is determined from the reliability index β 

Number of iterations n 1 5..:=

The initial guess
values of X

βn x μ←

x1

a0 a4 x4⋅ a5 x5⋅ a6 x6⋅+ a7 x7+( )⋅+⎡⎣ ⎤⎦−

a1 a2 x2⋅ a3 x3⋅+( )⋅
←

σei
dnorm qnorm Φ xi μi, σi, αi,( ) 0, 1,( ) 0, 1,( )

φ xi μi, σi, αi,( )
←

μei xi σei qnorm Φ xi μi, σi, αi,( ) 0, 1,( )⋅−←

ui

xi μei−

σei
←

i 1 7..∈for

g1 a1 a2 x2⋅ a3 x3⋅+( )σe1⋅←

g2 a1 a2⋅ x1⋅ σe2⋅←

g3 a1 a3⋅ x1⋅ σe3⋅←

g4 a4 a5 x5⋅ a6 x6⋅+( )⋅ σe4⋅←

g5 a4 a5⋅ x4⋅ σe5⋅←

g6 a4 a6⋅ x4⋅ σe6⋅←

g7 a4 a7⋅ x4⋅ σe7⋅←

β
g u⋅( )−

g g
→
⋅( )0.5

←

aai

gi

g g
→
⋅( )0.5

←

xi μei aai β⋅ σei⋅−←

i 1 7..∈for

x1

a0 a4 x4⋅ a5 x5⋅ a6 x6⋅+ a7 x7+( )⋅+⎡⎣ ⎤⎦−

a1 a2 x2⋅ a3 x3⋅+( )⋅
←

j 1 n..∈for

β

:=

The value x2 is
calculated
from g (X)= 0

Equivalent
normal
distributions of
the basic
variables X. 

Standardised variables

Derivatives of g(X):

Reliability index:

Sensitivity factors:

New design point
to be used in the
next iteration, go
back to the
section 5 and use
this data in a new
run 

Iteration of the
reliability index β 

β

0

2.9022

2.9303

2.9292

2.929

2.9289

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= pf pnorm β5− 0, 1,( ):=

pf 1.7006 10 3−
×=

Probability of
failure pf 
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Attachment 11 – EXCEL sheet “FORM7.xls” 

EXCEL sheet RORM7.xls - FORM iterative computation of the reliability index beta

Limit state function g(X)= a0+a1*X1*( a2*X2+a3*X3)+a4*X4*( a5*X5+a6*X6+a7*X7)

Basic variables Xi are approximated by general three-parameter lognormal distribution 
LN(mu,sigma, skew), which becomes automatically normal distribution when skew = 0.
 Note that: skew = 3sigma/mu for two-parameter lognormal distribution

skew = 1.14 for Gumbel distribution
skew = 2sigma/mu for Gamma distribution 

A B C D E F G H I J K L
Input data  The initial x1 is automatically calculated, do not change x1

i ai Xi Guess of  x2 80,00 Lognormal of Xi
0 0 mu sigma skew C x0 Design p. u uu phi PHI
1 1 1,000 0,050 0,150 0,050 0,00 0,963 -0,74 -0,73 6,3395 0,2319
2 1 100,000 10,000 0,301 0,100 0,00 65,451 -3,45 -4,20 0,0000 0,0000
3 1 0,010 0,010 0,301 0,100 -0,09 0,009 -0,07 -0,02 40,2671 0,4918
4 -1 1,000 0,050 0,150 0,050 0,00 1,035 0,71 0,72 5,9511 0,7642
5 1 30,000 10,000 0,000 0,000 infinity 54,089 2,41 2,41 0,0022 0,9920
6 1 5,000 2,000 1,140 0,364 -0,496 5,727 0,36 0,53 0,1581 0,7015
7 1 1,000 1,000 1,140 0,364 -1,748 1,061 0,06 0,24 0,3914 0,5943

Requirement for the design point, skewi>0 then x0i<xi, when skewi<0 then x0i>xi
Iteration of the FORM method - enter the new x manually instead of the initial x
ai xi Equivalent normalDeriv. SensitivityNew point  Partial factors

0 0 mue sigmae ui gi ui*gi alpha New x ��x/mu
1 1 0,998 0,048 -0,73 3,15 -2,308 0,240 0,963 0,963
2 1 75,000 6,529 -1,46 6,286 -9,194 0,479 65,451 Enter the 0,655
3 1 0,010 0,010 -0,02 0,01 -2E-04 0,001 0,009 new xi 0,948
4 -1 0,998 0,052 0,72 -3,09 -2,228 -0,236 1,035 to x2 1,035
5 1 30,000 10,000 2,41 -10,4 -24,94 -0,788 54,089 to x7 1,803
6 1 4,567 2,195 0,53 -2,27 -1,201 -0,173 5,727 in H16 1,145
7 1 0,825 0,991 0,24 -1,03 -0,245 -0,078 1,061 to H21 1,061

Sum 13,13 -40,12 1,000
1 beta in iter. n 3,0551 Macro procedure

Required acc. 0,001 beta in iter. n-1 3,0551 1,8E-05 Accuracy reached
Probability of failure pf=PHI(-beta) - command =NORMDIST(-G34;0;1;1) 1,1E-03

The whole iteration procedure may be performed manually following instruction given 
in the cells K27 to K32 or using Macro "ITERATION". 

Note that the initial gueas of variables X2 to X7 should be enteredto the cells H16 to H21.

Number of iter.
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Attachment 12 – MATLAB package “FORM7.m” 
 
function pf = FORM7 
%  DESCRIPTION, 28.02.2005 
%     FORM7a evaluates the probability of failure pf considering the limit state function 
% 
%                g(X)=A0 + A1*X1*(A2*X2+A3*X3) + A4*X4*(A5*X5+A6*X6+A7+A7) 
%  
%  FUNCTIONS USED 
%     LNDENS(x,ske,me,se), LNDIST(x,skr,mr,sr), NDENS(x), NDIST(x) and NDINV(p) 
%  INPUT 
%     Input data (except A0) are loaded from the files A.dat (coefficients A), and X.dat 
(parameters 
%     of the basic variables X). All the basic variables are characterised by the mean m, 
standard deviation s 
%     and skewness sk (arbitrary). The FORM procedure approximates the basic variables by 
general  
%     lognormal distribution LN(m,s,sk), including normal distribution (for sk=0). 
%      
%  OUPUT 
%     val   : failure probability pf 
%  VERSION 
%     MH, Czech Technical University in Prague, Klokner Institute, 28.2.2005 
%  Initialization 
% %loading external data files 
load A.dat, load X.dat, %The matrix X can be also defined in the comand window 
A0=0;% additive constant (not included in the data file A.dot), default value A0=0. When A0 
is different from 0, 
 % numrical probles may arise. Then a new alternative initial point (for example modifying 
resistance) may be choosen.   
for i=1:1:7; 
 x(i)=X(i,1); % Initial guess value of basic variables 
end 
x(1)=-(A0+A(4)*x(4)*(A(5)*x(5)+A(6)*x(6)+A(7)*x(7)))/(A(1)*(A(2)*x(2)+A(3)*x(3))); % 
Initial guess value of x1 
% FORM iterations 
acc=0.001;delta=1;betap=0;j=0;%required accuracy (may be modified if required)initial 
iteration parameters 
while delta > acc %for j=1:1:5 %Iteration loop for a given accuracy (5 cycles are usually 
sufficient for acc = 0.001) 
 j=j+1; % The indicator of the number of cycles 
 for i=1:1:7; % Loop for transformation of original distributions to equivalent normal 
ditributions 
 
se(i)=NDENS(norminv(LNDIST(x(i),X(i,1),X(i,2),X(i,3))))/LNDENS(x(i),X(i,1),X(i,2),X(i,3
)); 
 me(i)=x(i)-se(i)*norminv(LNDIST(x(i),X(i,1),X(i,2),X(i,3))); 
 u(i)=(x(i)-me(i))/se(i); % Standardized variables    
 end 
 % Derivatives of g(X)     
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 g(1)=A(1)*(A(2)*x(2)+A(3)*x(3))*se(1);g(2)= A(1)*A(2)*x(1)*se(2);g(3)= 
A(1)*A(3)*x(1)*se(3); 
 g(4)=A(4)*(A(5)*x(5)+A(6)*x(6))*se(4); g(5)= A(4)*A(5)*x(4)*se(5);g(6)= 
A(4)*A(6)*x(4)*se(6); 
 g(7)= A(4)*A(7)*x(4)*se(7);  
 % Auxiliary quantities 
 gg=sqrt((g(1)*g(1)+g(2)*g(2)+g(3)*g(3)+g(4)*g(4)+g(5)*g(5)+g(6)*g(6)+g(7)*g(7))); 
 gu=g(1)*u(1)+g(2)*u(2)+g(3)*u(3)+g(4)*u(4)+g(5)*u(5)+g(6)*u(6)+g(7)*u(7); 
 % Reliability index 
 beta =-gu/gg; 
 for i=1:1:7; % Loop for determining sensitivity factors and a new design point   
 aa(i)=g(i)./gg; % sensitivity factors 
 x(i)=me(i)-beta.*aa(i).*se(i); % New design point   
 end 
 x(1)=-
(A0+A(4)*x(4)*(A(5)*x(5)+A(6)*x(6)+A(7)*x(7)))/(A(1)*(A(2)*x(2)+A(3)*x(3))); % Initial 
guess value of x1 
 delta=abs(beta-betap); % Difference of beats of two last cycles 
 betap=beta; % Saving the current beta 
end 
%    Outputs 
Number_of_iterations_snd_achieved_accuracy=[j,delta], 
Alphas=[aa(1),aa(2),aa(3),aa(4),aa(5),aa(6),aa(7)], 
Design_points=[x(1),x(2),x(3),x(4),x(5),x(6),x(7)], 
Design_points_over_means=[x(1)/X(1,1),x(2)/X(2,1),x(3)/X(3,1),x(4)/X(4,1),x(5)/X(5,1),x(6
)/X(6,1),x(7)/X(7,1)], 
beta, %a1=aa(1),a2=aa(2),a3=aa(3),a4=aa(4),a5=aa(5),a6=aa(6),a7=aa(7),% To be printed if 
needed     
pf=NDIST(-beta); % Answer of the function FORM7 
% The end of the function FORM7 
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Attachment 13 – MATLAB function “Lndens (x,mu,sigma,sk)” 
 
function val = Lndens (x,mu,sigma,sk) 
%  DESCRIPTION 
%     NDENS evaluates the one-dimensional normal density function. 
%  CALL 
%     val = Lndens (x,sk); 
%     val = Lndens (x,sk,mu,sigma); 
%  INPUT 
%     x     : real vector of arguments 
%     sk    : coefficient of skewness (must be given) 
%     mu    : mean value; optional; default = 0.0 (i.e. standard) 
%     sigma : std. dev. > 0; optional; default = 1.0 (i.e. standard) 
%  OUPUT 
%     val   : vector of normal density values for the x's 
%  VERSION 
%     Milan Holicky, Czech Technical University in Prague, Klokner Institute 
%     18.09.1999 
%  Initialization 
if nargin < 3 
 mu    = 0.0; 
 sigma = 1.0; 
end 
%  Evaluate 
x   = (x-mu)/sigma;                        % normalize 
c=(0.5*sk+(sk^2/4+1)^0.5)^(1/3)-(-0.5*sk+(sk^2/4+1)^0.5)^(1/3);%constant of lognormal 
if c==0; % sk=0  
 x0=10^10; 
 else 
 x0=-1/c; %bound of the distribution    
 end 
if sk>0; %check of x range 
 if x0>x 
 error ('x out of range') 
 else 
 end 
else 
 if x0<x 
 error('x out of range') 
 else 
 end 
end 
% 
if abs(c)>0.0001; %if for c=0 (sk=0) 
 tt=sign(sk)*(log(abs(x+1/c))+log(abs(c))+0.5*log(1+c^2))/((log(1+c^2))^0.5); 
 else 
 tt=x; 
 end 
if abs(c)>0.0001; %if for c=0 (sk=0) 
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 val = exp(-0.5*tt.^2)/(sqrt(2*pi)*sigma*abs(x+1/c)*(log(1+c^2))^0.5);  
else 
 val = exp(-0.5*tt.^2)/(sigma*sqrt(2*pi));    
end 
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 Attachment 14 – MATLAB function “Lndist (x,mu,sigma,sk) ” 
 
function val = Lndist (x,mu,sigma,sk) 
%  DESCRIPTION, 18.09.1999 
%     LNDIST evaluates the one-dimensional lognormal distribution function. 
%  CALL 
%     val = lndist (x,sk) 
%     val = lndist (x,sk,mu,sigma) 
%  INPUT 
%     x     : real vector of arguments. 
%     sk    : coefficient of skewness; default = 0.0 (i.e. normal distribution) 
%     mu    : mean value; optional; default = 0.0 (i.e. standard). 
%     sigma : std. dev. > 0; optional; default = 1.0 (i.e. standard). 
%  OUPUT 
%     val   : vector of the lognormal distribution evaluated at the x's. 
%  VERSION 
%     Milan Holicky, Czech Technical University in Prague, Klokner Institute 
%  Initialization 
if nargin < 3 
 mu    = 0.0; 
 sigma = 1.0; 
end 
x   = (x-mu)/sigma;             % standardize 
c=(0.5*sk+(sk^2/4+1)^0.5)^(1/3)-(-0.5*sk+(sk^2/4+1)^0.5)^(1/3);%constant of lognormal 
if c==0; % sk=0  
 x0=10^10; 
 else 
 x0=-1/c; %bound of the distribution    
 end 
if sk>0; %check of x range 
 if x0>x 
 error ('x out of range') 
 else 
 end 
else 
 if x0<x 
 error('x out of range') 
 else 
 end 
end 
if abs(c)>0.01; %if for c=0 (sk=0) 
 tt=sign(sk)*(log(abs(x+1/c))+log(abs(c))+0.5*log(1+c^2))/((log(1+c^2))^0.5); 
 else 
 tt=x; 
end 
val = normcdf(tt);%(1+erf(tt/sqrt(2)))/2;     % transformed error function 
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Attachment 15 – MATLAB function “Ndens (x, mu,sigma)” 
 
function val = ndens (x, mu,sigma) 
% 
%  DESCRIPTION 
%     NDENS evaluates the one-dimensional normal density function. 
% 
%  CALL 
%     val = ndens (x); 
%     val = ndens (x, mu,sigma); 
% 
%  INPUT 
%     x     : real vector of arguments 
%     mu    : mean value; optional; default = 0.0 (i.e. standard) 
%     sigma : std. dev. > 0; optional; default = 1.0 (i.e. standard) 
% 
%  OUPUT 
%     val   : vector of normal density values for the x's 
% 
%  VERSION 
%     Niels Jacob Tarp-Johansen 
%     Department of Structural Engineering and Materials  
%     Technical University of Denmark 
%     15.06.1999 
% 
 
 
%  Initialization 
if nargin < 2 
 mu    = 0.0; 
 sigma = 1.0; 
end 
 
%  Evaluate 
x   = (x-mu)/sigma;                        % normalize 
val = exp(-0.5*x.^2)/(sigma*sqrt(2*pi)); 
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Attachment 16 – MATLAB function “Ndinv (p)” 
 
function [x] = norminv(p,mu,sigma) 
%NORMINV Inverse of the normal cumulative distribution function (cdf). 
%   X = NORMINV(P,MU,SIGMA) returns the inverse cdf for the normal 
%   distribution with mean MU and standard deviation SIGMA, evaluated at 
%   the values in P.   
%   Default values for MU and SIGMA are 0 and 1, respectively. 
% 
%   MH, Klokner Institute, CTU Prague 4.8.2003  
%    
if nargin < 2 
 mu = 0; 
end 
if nargin < 3 
 sigma = 1; 
end 
% Return NaN for out of range parameters or probabilities. 
 sigma(sigma <= 0) = NaN; 
 p(p < 0 | 1 < p) = NaN; 
 x0 = -sqrt(2).*erfcinv(2*p); 
 x = sigma.*x0 + mu;
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Attachment 17 - MATLAB function “Ndist (x, mu,sigma)” 
function val = ndist (x, mu,sigma) 
% 
%  DESCRIPTION 
%     NDIST evaluates the one-dimensional normal distribution function. 
% 
%  CALL 
%     val = ndist (x) 
%     val = ndist (x, mu,sigma) 
% 
%  INPUT 
%     x     : real vector of arguments. 
%     mu    : mean value; optional; default = 0.0 (i.e. standard). 
%     sigma : std. dev. > 0; optional; default = 1.0 (i.e. standard). 
% 
%  OUPUT 
%     val   : vector of the normal distribution evaluated at the x's. 
% 
%  VERSION 
%     Niels Jacob Tarp-Johansen 
%     Department of Structural Engineering and Materials 
%     Technical University of Denmark 
%     13.06.1999 
%  Initialization 
if nargin < 2 
 mu    = 0.0; 
 sigma = 1.0; 
end 
 
%  Evaluation 
x   = (x-mu)/sigma;             % standardize 
val = (1+erf(x/sqrt(2)))/2;     % transform error function 
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Summary 
 

The basic European standard for design of buildings and other engineering works, 
EN 1990 “Basis of structural design”, provides alternative design procedures, for which 
national choice is allowed. One of the most important questions concerns three fundamental 
combinations of actions for persistent and transient design situations in the Ultimate limit 
states. Simple example of generic structural member shows, that the alternative load 
combinations may lead to considerably different reliability levels. Probabilistic methods of 
structural reliability theory are used to identify characteristic features of each combination and 
to formulate general recommendations. It appears that further calibration studies concerning 
structures made of different materials are needed during the examination period of EN 1990 
in order to analyse all possible consequences of national choice. 

 
 
1 INTRODUCTION 
 
1.1 Background materials 

Each part of Eurocodes, including basic document EN 1990 [1], contains a number of 
the Nationally Determined Parameters (NDP) for which national choice is allowed. In 
accordance with the Guidance paper L concerning the Construction Products Directive an 
important two years period after date of availability of each Eurocode Part is allowed to fix 
the NDPs. However it is expected that calibration will continue during the coexistence period, 
which starts at the end of the National calibration period and lasts up to three years after the 
national publication of the last Part of a Package.  
 
 
1.2 General principles 

Basic concepts of code calibration are mentioned in Annex C of EN 1990 [1], in the 
International Standard ISO 2394 [2] and ISO 13822 [3]. Additional information may be found 
in the background document developed by JCSS [4] and in recently published handbook [5] 
to EN 1990 [1]. Guidance for application of probabilistic methods of structural reliability may 
be also found in working materials provided by JCSS [6] and in relevant literature listed in [5] 
and [6].  

In general NDPs may be calibrated either by direct comparison or by probabilistic 
methods. Results of both approaches are usually combined with judgement (as mentioned in 
ISO 2394 [2]). In this study probabilistic approach is applied mainly, a direct comparison of 
load effects is shortly described in Appendix A to this contribution. Note that for the 
probabilistic calibration software products [7,8,9] can be used. In particular the programme 
[9] is intended for calibration purposes. Special purpose MATLAB functions and 
MATHCAD sheet attached to this Annex may be also used for calibration studies. 
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It should be noted that two aspects of calibration might be explicitly considered: 
reliability and economy (see also Handbook 1). However, the following text shall be primarily 
concerned with reliability of structures with respect to ultimate limit states. Additional 
calibration aspects may concern fire safety of structures (see Handbook 5) or other accidental 
design situations. In particular EN 1990 [1] requires that in the case of fire, the structural 
resistance shall be adequate for the required period of time.  

To consider all the above-mentioned aspects of structural reliability, an appropriate 
design lifetime, design situations and limit states should be considered (as described in 
Handbook 1). Note that the basic lifetime for a common building is 50 years and that, in 
general, four design situations are identified: persistent, transient, accidental and seismic.  
 
 
2 FUNDAMENTAL LOAD COMBINATIONS 
 

In the following, the combination of three actions is considered: permanent action G, 
imposed load Q (leading) and wind W (accompanying). EN 1990 [1] for the fundamental 
combination of these loads in persistent and transient design situations introduces three 
alternative procedures denoted here A, B and C. The loads (actions) G, Q and W and their 
characteristic values Gk, Qk and Wk denote generally load effects (for example internal 
bending moments) of appropriate loads (actions) and should be distinguished from the 
original loads (actions) themselves. However, when mutual proportions of loads (actions) and 
load effects are the same, then the distinction between load and load effects is not needed. 

Design value of action effect Ed is obtained using the characteristic values Gk, Qk and 
Wk and appropriate partial factors γG, γQ, γW and reduction factors ξ, ψQ and ψW as follows. 
 

A. Considering the formula (6.10) in EN 1990 [1], the design value of action effect Ed 
is given as 

 Ed = γG Gk + γQ Qk + γW ψW Wk (1) 
B. An alternative procedure is provided in EN 1990 [1] by twin expressions (6.10a) 

and (6.10b)  

 Ed = γG Gk + γQ ψQ Qk + γW ψW Wk (2) 

 Ed = ξ γG Gk + γQ Qk + γW ψW Wk (3) 

The less favourable action effect from (2) and (3) should be considered. In equation 
(3) ξ is a reduction factor for unfavourable permanent actions G. Note that in equations (1) to 
(3) “+” generally implies “to be combined with”. 
 

C. In addition EN 1990 [1] allows further modification of alternative B, simplifying 
equation (2) by considering permanent loads only, thus the load effect is then  

 Ed = γG Gk   (4) 
The less favourable action effect resulting from (3) and (4) is then considered. In 

addition to the combinations A, B, C provided in EN 1990 [1] (for recommended values γG = 
1,35, γQ = 1,5) an additional combination may be also considered in the analysis to illustrate 
the sensitivity of the resulting reliability level to partial factors, and the possible effect of their 
reduction.  

 
If the leading action is wind W, then in equations (1) and (2) instead of reducing wind 

action W by factor ψW, the imposed load Q should be reduced by the appropriate factor ψQ. 
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Factors γG, γQ and γW denote the partial factors of actions G, Q and W (the partial factors for 
both variable actions are equal, γQ = γW). 
 

To investigate resulting load effects under various intensities of variable actions, the 
characteristic values of Gk, Qk and Wk are related using quantities χ given as the ratio of 
variable actions Qk+Wk to total load Gk+Qk+Wk, and ratio k of accompanying action Wk to 
the main action Qk 

 χ = (Qk+Wk)/(Gk+Qk+Wk), k = Wk/Qk (5) 

Note that a realistic range of χ is from 0,1 to 0,6. However in some cases the load ratio 
χ may be very low if not zero (e.g. underground garages). 
 

For a given design value of the load effect Ed the characteristic values of individual 
actions Gk, Qk, Wk can be expressed using variables χ and k as follows 

 Gk = 
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The factors ξ, γG and γQ indicated in the first relationship of (6) in brackets are applied 
in the same way (either yes or no) as in equations (1) to (4) for alternative combination rules 
A, B and C. 
  

For alternative A, equation (1) is valid in the whole range 0 ≤ χ ≤ 1, whereas using 
alternative B, equation (2) is valid in the interval 0 ≤ χ ≤ χlim,B and equation (3) in the interval 
χlim,B ≤ χ ≤ 1. Correspondingly, for alternative C equation (4) is valid in the interval 0 ≤ χ ≤ 
χlim,C and equation (3) in the interval χlim,C ≤ χ ≤ 1. The limiting values χlim,B and χlim,C can be 
derived from equations (2) to (5) as follows  
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where the auxiliary variable a = 1 and b = ψW when for k ≤ (1–ψQ)/(1–ψW) (imposed 
load Q is the leading action) and a = ψQ and b = 1 when k > (1–ψQ)/(1–ψW) (action W is the 
leading action). 

 
EN 1990 allows through the National Annex, which will be published by national 

standardisation institution  
 

• Which of the combination expression to use, and 
• The specification of appropriate safety factors 

 
Thus, the National Annexes should include the recommendation of one of the 

alternatives indicated in EN 1990 [1] for a fundamental combination of actions in the 
Ultimate limit states and partial factors γG and γQ for permanent and variable actions. 
Considering a generic structural member it will be shown that the choice of these nationally 
determined parameters may significantly affect the resulting reliability level. Partial and 
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reduction factors γ, ψ and ξ recommended in EN 1990 [1] and used in this paper are 
summarized in Table 1.  
 
Table 1. Partial and reduction factors. 

Action Partial factors 
γ 

Combination factor 
ψ 

Reduction factor 
ξ 

Permanent G 1,35 1,0 0.85 
Imposed Q 1,5 0,7 - 
Climatic W 1,5 0,6 - 

 
In addition to the factors indicated in Table 1 other values will be used to make comparison of 
Eurocode procedures with some national rules. 
 
 
3 GENERIC STRUCTURAL MEMBER 
 

In case of generic structural member it is assumed that the characteristic value Rk of 
the resistance R may be defined as the 5% fractile of R and the design value Rd as 

 Rd = Rk/γR (9) 

where γR denotes the global resistance factor (commonly expected to be within the 
range from 1 to 1,2). The significance of both values Rk and Rd is obvious from Figure 2, 
where the random variable R is described by the probability density function ϕR (R), and the 
design value Rd is indicated as a particular value of R corresponding to a certain small 
probability p of being violated. 

 
 

 
Figure 2. Random variable R, the characteristic value Rk and design value Rd. 

 
 

In design calculation of a structural member the design value Rd of the resistance R is 
normally obtained by substituting design values Xdi for the random variables Xi, thus  

 Rd = R(Xdi) (10) 

 

 p 

σR σR

μRRd 

ϕR(R)

R Rk 

 5% 
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This expression is also used in design of members for the generic structural member 
and for the different materials. 
 

Table 2 shows the assumed values for the global resistance factor γR and the 
coefficient of variation VR, used in the following reliability analysis for a generic cross-
section.  
 
 
Table 2 Global resistance factor γR, the coefficient of variation VR and the mean factor ω. 
 
 Middle value Range 
EN - global safety factor γR = Rk /Rd 1,15 1,0 – 1,3 
BSI - global safety factor γR = Rk /Rd, BSI 1,10 1,0 – 1,20 
The coefficient of variation VR 0,15 0,10 – 0,25 
The mean factor ω = μR/Rk 1,28 1,10 – 1,40 
Note 1. The coefficient of variation VR includes the variability of the model uncertainty assumed to have the 
coefficient of variability 0,05.   
Note 2. The values are different for BSI codes reflecting the fact that lower values of μR are used for particular 
materials.  
 
 

A middle values for the global safety factor γR = 1,15, for the coefficient of variation 
VR = 0,15 and for the mean ratio ω = μR/Rk = 1,28 are considered in the following example of 
a code condition.  
 
 
4 PRINCIPLES OF RELIABILITY ANALYSIS 
 
4.1  Limit state function  
 The most important step in reliability analysis is definition of a limit state function 
(reliability margin) Z(X) separating safe and unsafe domain of basic variables X. In this report 
the limit state function Z(X) is considered as in a simple form as a difference between the 
resistance R(X) and the load effect E(X)  

 Z(X) = R(X) – E(X) = θR R0(X) – θE E0(X) (11) 

where factor θR represents uncertainties of the resistance model R0(X) and factor θE represents 
uncertainties of the load effect model E0(X). The vector X denotes all the basic variables 
entering the expressions for the resistance R(X) and the load effect E(X). Taking into account 
general expressions (1) to (4) the load effect E0(X) may be written as  

 E(X) = θE (G0 + Q0 + W0) (12) 

 Considering the limit state function given by equation (11) and expression (12) giving 
the load effect, it follows that basic variables R, G, Q, and W covering effects of model 
uncertainties are defined as follows 

 R = θR R0(X), G= θE G0, Q= θE Q0, W= θE W0 (13) 
 Taking into account equation (13), the limit state function (11) may be written in a 
simple form as 

 Z(X) = R – (G + Q+ W) (14) 
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Note that the cumulative basic variables R, G, Q, W in equation (14) include effects of the 
factors θR and θE (see equation (13)). 
 
4.2 Probabilistic models of basic variables 

It is assumed that structural members are designed economically, which means that the 
design value of the resistance Rd(X) equals the design value of the load effect Ed(X)  

 Rd(X) = Ed(X) (15) 

It should be noted that normally (due to several reasons) the design resistance Rd(X) is greater 
than the design load effect Ed(X), which may provide additional safety margin not considered 
here. 

 
Assuming a certain set of partial and combination factors γ, ψ, and ξ, the design 

expression (15) can be used to specify the characteristic values Xk of each basic variable X. 
The probabilistic characteristics (the mean, standard deviation) of each basic variable X can 
be then related to its characteristic value Xk as indicated in Table 3. 

 
 

Table 3. Probabilistic models of basic variables for time invariant reliability analysis using 
Turkstra's rule (combination of 50-year maximum of leading action and an annual maximum 
of accompanying action). 
No. Category of  

variables 
Name of basic 
variables 

Sym.
X 

Dim-
ension 

Distri-
bution 

Mean 
μX 

St.dev. 
σX 

1 Actions Permanent G0 kN N Gk 0,1μX 
2  Imposed - 5 years Q0 kN/m2 GU 0,2Qk 1,1μX 
2  Imposed - 50 y. Q0 kN/m2 GU 0,6Qk 0,35μX
3  Wind - 1 year W0 kN/m2 GU 0,3Wk 0,5μX 
4  Wind - 50 year W0 kN/m2 GU 0,7Wk 0,35μX 
5 Resistance Resistance R kN/m2 LN Rk +1.65σR 0,15μX 
6 Uncertainty  Uncertainty  θE - LN 1 0.05 
 
 Probabilistic models indicated in Table 3 are based on data available in the 
recommendation of JCSS [4,6] and literature [11,12,13,14]. As mentioned above the 
probabilistic characteristics indicated in Table 3 represent just conventional models that might 
be slightly conservative.  

 
Note that the mean of a resistance R indicated in Table 3 in terms of the characteristic 

value Rk and the standard deviation σR may be assessed assuming a given coefficient of 
variation VR using relationship  

 μR = Rk exp(1,65 VR) (16) 

Under this assumption the mean resistance factor ω considered in Table 2 is given as  

  ω = μR / Rk = exp(1,65 VR) (17) 
Considering the coefficient of variation VR = 0.15, the mean resistance factor becomes 

ω = 1.28 as indicated in Table 2. 
 
It should be emphasised that the probabilistic models of basic variables indicated in 

Table 3 are primarily intended as "conventional models" in time invariant reliability analysis 
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of structural members using Turkstra's combination rule [10] (explained also in [2]) for the 
probabilistic calibration of the rules for combination of actions.  

 
Conventional models indicated in Table 3 should enable the objective comparison of 

results of various reliability studies expected in the near future in connection with 
implementation of the present suite of Eurocodes into the national systems of design codes. 
However, when the reliability of different types of structural members under particular 
conditions is assessed, the proposed models in Table 3 may have to be adjusted to the 
concrete conditions of the analysed structural member. 
 
4.3 Reliability measures 

The probability of failure Pf is the basic reliability measure used in this study. It can be 
expressed on the basis of a limit state (performance) function Z(X) defined in such a way that 
a structure is considered to survive if Z(X)> 0 and to fail if Z(X) ≤ 0. An example of the 
function Z(X) is given by equation (14). In a general case the failure probability Pf can be 
determined using the integral 

 Pf  = Prob(Z ≤ 0) = ( )∫
≤0)(

d
Xg

g XXϕ  (18) 

where ϕg(X) denotes joint probability density distribution of the basic variable X, 
which may not be , however, available. 

 
Assume that both the resistance R(X) and the load effect E(X) represent a single 

variable X used to analyse structural performance (e.g. axial force or bending moment that is 
represented by R(X) and E(X)). Then the integration indicated in expression (18) may be 
simplified and the probability Pf can then be expressed as: 

 Pf  = Prob(Z(x) ≤ 0) = ( ) ( )∫
∞

∞−

Φ xxx RE dϕ  (19) 

where ϕE(x) denotes the probability density function of E(X), ΦR(x) the distribution of R(X). 
To use equation (19) both the probability density function ϕE(Z) and the distribution function 
ΦR(x) must be known (at least in an approximate form). Simplified procedure based on 
expression (19) is used in this study.  

 
Note that there are commercially available software products (e.g. VaP, COMREL), 

which can be used to determine the failure probability Pf in more complicated cases than 
considered here (when expression (19) cannot be used). These software products were used in 
this study to check results obtained by numerical integration based on expression (19).  

In Annex C of EN 1990 an alternative measure of reliability is conventionally defined 
by the reliability index β, which is related to Pf as 

 )(f β−Φ=P  (20) 

where Φ is the cumulative distribution function of the standardised normal distribution. The 
relation between Pf and β is indicated in Table 4. 
 
Table 4. Relation between β and Pf. 

Pf 10-1 10-2 10-3 10-4 10-5 10-6 10-7 
β 1,28 2,32 3,09 3,72 4,27 4,75 5,20 
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Table C2 of EN 1990 recommends for the ultimate limit state of buildings over a fifty 

year design working life a target value of reliability index βt = 3,8. If one year period is 
considered in reliability verification, then βt = 4,7. Both the equivalent reliability measures, 
the failure probability Pf and the reliability index β, are used in this study.  
 
 
4.4 Sensitivity factors 
 Sensitivity factors of the First Order Reliability Methods (FORM) are normally used 
[1,2] to calibrate design values of basic variables and partial safety factors. Considering the 
limit state function Z(X) (reliability margin) given by equation (11), the sensitivity factors for 
the four cumulative variables R, G, Q, W can be defined in terms of their standard deviations 
σR, σG, σQ and σW as follows 

 
g

R
R σ

σα = , 
g

G
G σ

σα = , 
g

Q
Q σ

σ
α = , 

g

W
W σ

σα =  (21) 

 
where σg denotes the standard deviation of Z(X) given as  
 
 2222

WQGRg σσσσσ +++=  (22) 
   
 In the following investigation the sensitivity factors αR, αG, αQ and αW defined by 
equation (21) are considered together with the failure probability Pf and the reliability index 
β. It should be underlined that αR, αG, αQ and αW defined by (21) refer to cumulative 
variables R, G, Q, W, which include effects of the factors of model uncertainties θR and θE 
(see equation (13)). 
 
 
5 RESULTS FOR THE GENERIC CROSS-SECTION 
 
5.1 One variable action 

 Results of the reliability analyses are presented in graphical form that indicates 
variation of the reliability index β, failure probability Pf, and sensitivity factors αR, αE, αG, αQ 
and αW with the load ratio χ. In particular Figure 3 shows results of a simple case of one 
variable action only (the main variable action Q); Figure 3 indicates the variation of  
 

- the reliability index β,  
- failure probability Pf, and 
- for expression 6.10 of EN 1990 sensitivity factors αR, αE, and partial sensitivity 

factors αG, αQ and αW 
 
with the load ratio χ. 
 

For the analysis it has been assumed that a single variable action, the imposed load Q 
having the characteristic given in Table 3 is acting on the generic element only (i.e. k = 0.0). 
A middle value for the global safety factor γR = 1,15 and for coefficient of variation VR = 0,15 
have been considered. 
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Figure 3. Variation of the reliability index β, the failure probability Pf and the sensitivity 
factors αR, αE, αG, αQ and αW with the load ration χ for k = 0, for a generic cross-section 

assuming γR = 1,15 and the coefficient of variation VR = 0,15. 
 
 

It follows from Figure 3 that for the assumed higher coefficient of variation VR = 0,15 
only the combination rule A (i.e. expression (6.10) of EN 1990) [1] seems to be fully 
acceptable (β > 3.8 and Pf.< 7,23×10-5) in the interval 0 < χ < 0.8, however the reliability 
level considerably varies with χ. In some cases the alternative A might lead to an uneconomic 
design.  

The alternative B (i.e. expression (6.10a) and (6.10b) of EN 1990) is acceptable in a 
slightly shorter range of χ, 0 < χ < 0.7 than the variant A but provides obviously much more 
uniform distribution of reliability level with χ. Obviously it would lead to a more economic 
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design than the alternative A. Alternative C (i.e. modified expression (6.10a) and (6.10b) of 
EN 1990 [1]) is providing rather low reliability level particularly for the interval 0 < χ < 0.3 
and should not be used unless partial factors γ are changed.  

 
Similar results were obtained in previous studies [11,12,13,14] of structural elements 

made of different materials (concrete and steel elements). These studies differ from the 
presented results primarily by the value of the partial factor γR and the coefficient of variation 
VR (and also by the asymmetry of the distribution of R). Just the conclusions formulated above 
seem to be supported by a number of different material oriented examples.  

 
Note that the sensitivity factor αR increases to about αR ~ 0,9 while the factor αE 

decreases, αE > - 0,5, indicating that the resistance gives a greater contribution to safety than 
intended by EN 1990. However this conclusion is strongly dependent on assumed coefficient 
of variation VR. With increasing VR the sensitivity factor αR increases. It is interesting to note 
that than the sensitivity factors are very close to the values recommended in EN 1990 [1], i.e. 
αR ~ 0,9 αE ~ -0,7. 

 
5.2 Two variable actions 

A more general case when two variable actions (a leading imposed load Q, together 
with an accompanying action W) are acting is shown in Figure 4, which (similarly as Figure 
3) shows the variation of the  

 
• reliability index β,  
• failure probability Pf, and  
• for expression 6.10 of EN 1990 sensitivity factors αR, αE, αG, αQ and αW  
with the load ratio χ for k = 0,75 and the coefficient of variation VR = 0,15. 
 

The case considered for Figures 3 (i.e. k = 0, with a single imposed load Q acting) is 
extended so that a more detailed insight of the effect for the reliability parameters considered 
can be obtained. However Previous investigations [11,12] clearly show that reliability in case 
of two variable actions is considerably greater than reliability in case of one variable action.  
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Figure 4. Variation of the reliability index β, the failure probability Pf and the sensitivity 
factors αR, αE, αG, αQ and αW with the load ratio χ for k = 0.75, for a generic cross section 

assuming γR = 1,15 and the coefficient of variation VR = 0,15. 
 
 

It follows from Figure 4 that for the assumed coefficient of variation VR = 0,15 and the 
consideration of two variable actions the reliability of the generic cross-section exposed to 
two variable actions is considerably greater than the reliability of the same cross-section 
exposed to one variable action only. This finding also indicates that the factor ψW may be 
rather high. Note that the sensitivity factors αR seems to be slightly greater than the values αR 
= 0,8 considered in EN 1990 [1] and αE in absolute value is less than αE = - 0,7 recommended 
in [1]. This finding depends on assumed variability of basic variables.  
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Figure 5. Variation of the reliability index β with the load ratio χ and partial factor for 
resistance γR and k = 0 (i.e. imposed load Q is the only variable action), for the generic-cross 

section assuming partial safety factors ψG = 1,35 and ψQ = 1,5, and the coefficient of variation 
VR = 0,15. 

 
 

It follows from Figure 5 that for the assumed variables the acceptable domain of the 
load ratio χ and the coefficient of variation VR is limited by the contour line determined as an 
intersection of the β surface and the plain β = 3,8 in Figure 5. Obviously with increasing γR 
reliability index β increases, γR = 1.15 would be satisfactory for most of the practical range of 
the load ratio χ (for the load ratio χ.< 0,8).  

 

γR  

χ  

β  
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6 CONCLUDING REMARKS 
 

The newly available EN 1990 provides alternative design procedures and parameters 
that should be unambiguously specified in the National Annexes of Member States of CEN. 
These alternative design procedures lead in some cases to significantly different reliability 
levels. Preparation of National Annexes is therefore a complicated task for each Member 
State. Furthermore, the Eurocode standards recognise the responsibility of the regulatory 
authorities in each Member State and safeguard their right to determine values related to 
regulatory safety matters at national level.  

Simple examples of a generic structural member confirm the results of the earlier 
studies that the reliability of structures, designed according to the alternative combination 
rules provided in EN 1990 by expressions (6.10), (6.10a) and (6.10b), may vary considerably. 
Expression (6.10) leads to the most reliable but in some cases uneconomical structures. Twin 
expressions (6.10a) and (6.10b) provide a lower but comparatively most uniform reliability 
level for all load ratios. Moreover, they seem to fully comply with EN recommendations 
(reliability index 3,8 for a 50-year time period). The lowest reliability is obtained from the 
third alternative, given by modified expression (6.10a) and expression (6.10b). This 
alternative seems to lead to a rather low reliability level, particularly for structures exposed 
mainly to a permanent load.  

In order to make an unambiguous recommendation for National Annexes to EN 1990, 
further investigations are urgently needed. Obviously more complicated structural elements, 
made of various materials, should be analysed and compared. Such a calibration activity 
should preferably be organised on an international level. The short-term objective of these 
activities should be to develop the necessary background materials for preparation of the 
National Annexes. The long-term objective should be to further harmonization of the 
alternative design procedures considered during the next revision of the present generation of 
Eurocodes.  

It is expected that further calibration studies concerning structures made of different 
materials will be needed during the examination period of EN 1990 (next few years) in order 
to analyse all possible consequences of national choice. 
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APPENDIX A. DIRECT COMPARISON OF LOAD EFFECTS 
 
 
Deterministic approach – the global load factor 
 

Concept of the global load factor is sometimes used to compare various alternatives 
for load combination with no regard to a resistance of a structure. The deterministic global 
load factor γE follows directly from codified combination rules and given partial factors 
without any probabilistic consideration; it is simply expressed as  

 
 γE = Ed / (Gk + Qk + Wk) (A.1) 

 
where the design load effect Ed is given by one of equations (1) to (4) depending on the 
combination rule considered (for example combination rules A, B or C). It follows from 
equation (1) to (4) and (A.1) that in general deterministic γE may be expressed as  

 
 γE = (1 - χ) γG (ξ) + (γQ (ψQ) + k γW (ψW)) χ / (1+ k) (A.2) 

 
where the factors in brackets (ξ), (ψQ) and (ψW) are applied in accordance with the principles 
of appropriate combination rule. For example assuming that Q is the leading variable load and 
W is accompanying load, the combination rule A based on expression (6.10) of EN 1990 [1] 
the global factor γE follows from (1) and (A.2) as  

 
 γE = (1 - χ) γG + (γQ  + k γW ψW) χ / (1+ k) (A.3) 
 
Similarly the global factors γE of other combination rules B and C may be obtained from 
general expression (A.2). It follows from (2) that equation (A.2) becomes 
 
 γE = (1 - χ) γG + (ψQ γQ  + k γW ψW) χ / (1+ k) (A.4) 
 
When equation (3) is applied, then equation (A.2) becomes 
 
 γE = (1 - χ) γG ξ + (γQ + k γW ψW) χ / (1+ k) (A.5) 
 
When equation (4) is applied, then equation (A.2) becomes 
 
 γE = (1 - χ) γG (A.6) 
 

Thus combination rule A is described by equation (A.3), combination B by equations 
(A.4) and (A.5), combination rule C by equations (A.4) and (A.6). 

Figure A.1 shows the global factor γE for all three-combination rules A, B and C 
assuming the load factor k = 0 (two loads G and Q are considered only). It is interesting to 
note that the global load factor γE is strongly dependent on the load factor k. Figure A.2 shows 
the case of three variable actions G, Q and W assuming k = 0,75. Similar results may be 
obtained for any load ratio k. However, it is well recognised that decisive requirements 
(compare Figures 3 and 4) for calibration of reliability elements follow from combinations of 
two actions only (G and Q). Figure A.2 just illustrates variation of the global factor with the 
load ratio χ in the case of two variable actions. 
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Figure A.1. The global load factor γE for the combination rules A, B and C assuming k = 0. 

 

 
Figure A.2. The global load factor γE for the combination rules A, B and C assuming k = 0,75. 
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Probabilistic approach – the theoretical global load factor 
 
Probabilistic approach to comparison of load effects E considers the probability p of E 

exceeding Ed = γE (Gk + Qk + Wk), thus the probability 
 

 p = P(E > Ed)  (A.7) 
 

The probability p is obviously dependent on the global load factor γE determining the load 
effect Ed as follows from equation (A.1). When probabilistic models of actions G, Q and W 
are known, then for a given value of γE the probability p may be determined. Let us remind 
that in accordance with the principles of EN 1990 [1] (considering αE = -0.7 and β = 3.8) the 
recommended value of the probability p given by equation (A.4) is  

 
 pE = Φ(αE β) = Φ(- 0,7 3,8) = 0,004 (A.8) 

 
Assuming probabilistic models of actions G, Q and W considered above in accordance 

with Table 3, variation of the theoretical load factors γE with the load factor χ for selected 
probabilities p is shown in Figure A.3 together with the deterministic load factors γE described 
above. In Figure A.3 full lines indicate the theoretical (probabilistic) load factors γE, the 
dashed lines indicate the deterministic load factors γE.  

 
 

Figure A.3. The global load factor γE for the combination rules A, B and C assuming k = 0 
and theoretical values of γE corresponding to selected probabilities of E exceeding Ed 
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Figure A.3 clearly indicates differences between the theoretical global factors γE 
determined using probabilistic approach and corresponding deterministic values described by 
equation (A.2). It follows from Figure A.3 that the deterministic values are greater than the 
theoretical values of γE corresponding to the probability p = 0,004 indicated in equation (A.5). 
Thus, the Eurocode combination rules seem to be on a safe side, in particular the combination 
rules A and B. Note that for small load ratios χ the combination rule C provides lower values 
of the global factor than the theoretical γE and, therefore, seems to be unsatisfactory.  

Figure A.3 further indicates that the theoretical γE is better followed up by γE 
corresponding to the combination rule B than those corresponding to the combination rules A 
or C. In that sense direct comparison of load effects confirms conclusions of previous studies 
when both the load effect and resistance are taken into account.  

 
Figure A.4. Variation of the theoretical and deterministic global factor γE with the load ratio χ 

and the probability p assuming the combination rule A. 
 
 
Variation of the global factor γE with the load ratio χ and the probability p clearly 

indicates that the combination rule A, represented in Figure A.4 by a plane, is rather safe (and 
perhaps uneconomic) substitution of the theoretical (probabilistic) values.  
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APPENDIX B. EFFECT OF THE RESISTANCE VARIABILITY 
 
 

In reliability analysis of a generic cross section the coefficient of variability VR = 0.15 
and the partial factor γR = 1,15 are assumed as an example of a code condition. However, 
resistance of various structural members made of different materials may have different 
variability and the partial factor. The coefficient of variability VR can be expected within a 
broad range from 0,05 up to almost 0,50 (including uncertainty resistance model). This should 
be reflected by appropriate value of the partial factor γR. Assuming lognormal distribution of 
R, the partial factor γR corresponding to the coefficient of variation VR can be expressed as  

 
 γR = exp(−1,65 VR)/exp(αE β VR) = exp(−1,65 VR)/exp(− 3,04 VR) (B.1) 

 
where αE β  = − 0,8 × 3,8 = − 3,04 as recommended in EN 1990 [1]. Note that for VR = 0,10 
equation B.1 yields the partial factor γR = 1,15.  

Figure B.1 shows the variation of the partial factor γR with the coefficient of variability 
VR together with corresponding reliability index β determined taking into account the partial 
factor γR as a function of VR given by equation (B.1). In Figure B.1 the combination rule A 
and a generic cross section are considered only.  

 
Figure B.1. Variation of the reliability index β of a generic cross section with the coefficient 
of variability VR for selected load ratios χ assuming the partial factor γR as a function of VR. 

 
 

 Figure B.1 indicates that if the partial factor γR is considered as a function of the 
coefficient of variability VR, the effect of resistance variability is not essential. Considering a 
realistic range of resistance variability 0,05 < VR < 0,25, differences in β values seem to be 
about 0,5. This finding justifies the concept of a generic cross section used in reliability 
analysis of alternative load combinations. 
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APPENDIX C. NOTATION 
 
 
E load effect including model uncertainty 
E0 load effect without model uncertainty 
Ed design value of the load effect E 
Ek  characteristic value of the load effect E 
Ed  design value of the load effect E 
G permanent load including model uncertainty, G = θ G0 
G0 permanent load without load uncertainty 
Gd design value of the resistance G, Gd=γG Gk 
Gk  characteristic value of the permanent load G 
k load ratio, k = Wk/Qk

 

Pf failure probability 
Q main (dominant) variable load including model uncertainty, Q = θ Q0 
Q0 main (dominant) variable load without model uncertainty 
Qd design value of the variable load Q, Qd=γQ Qk 
Qk  characteristic value of the variable load G 
R resistance including model uncertainty 

Rd design value of the resistance R, Rd=γR Rk 
Rk  characteristic value of the resistance R 
VR coefficient of variation 
W0 main (dominant) variable action without model uncertainty 
W  accompanying (non dominant) variable action including model uncertainty, W = θ W0 
Wd design value of the variable load W, Wd=γW Wk 
Wk characteristic value of the variable load W 
X vector of basic variables 
Z(X) limit state function 
αR sensitivity factors of R 
αE sensitivity factors of E 
αG sensitivity factors of G 
αQ sensitivity factors of Q 
αW  sensitivity factors of W 
β reliability index, )(f β−Φ=P  
ϕ() probability density function 
χ load ratio, χ =(Qk + Wk )/ (Gk + Qk + Wk ) 
γG partial factor for unfavourable permanent actions G 
γQ  partial factor for unfavourable variable actions Q 
γW partial factor for unfavourable variable actions W 
ψQ reduction factor for unfavourable permanent actions Q 
ψW reduction factor for unfavourable permanent actions W 
ξ reduction factor for unfavourable permanent actions G 
θ coefficient of model uncertainty 
Φ distribution function of standardised normal distribution 
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ATTACHMENTS 
 
 
 
1. MATLAB function "generic(gR,wr,k)". 

Matlab function "Generic" is intended for investigation of the combination rules 
provided in EN 1990. A general structural member of the resistance R (including model 
uncertainty) is considered. 

Function "Generic" calls function  
Action3(mr,sr,skr, Rd,k), which further calls functions  

Lnpf (mr,sr,skr,me,se,ske), which calls 
Lndens(x,ske,me,se) 
Lndist(x,skr,mr,sr) 
Ndinv(p) 

 
2. MATLAB function "Action3(mr,sr,skr,Rd,k)" 

MATLAB function "Action3" is intended for determining statistical characteristics of 
the load effect of different combinations of three actions.  

Function "Generic" calls function  
Lnpf (mr,sr,skr,me,se,ske), which further calls functions  

Lndens(x,ske,me,se) 
Lndist(x,skr,mr,sr) 
Ndinv(p) 

 
3. MATLAB function "Lnpf(mr,sr,skr,me,se,ske)" 

MATLAB function "Lnpf" calculates the failure probability using three parameter 
lognormal distribution for approximation of the load effect and resistance. 

Function "Lnpf" further calls functions  
Lndens(x,ske,me,se) 
Lndist(x,skr,mr,sr) 
Ndinv(p) 

 
4. MATLAB function "Lndens(x,mu,sigma,sk)" 

MATLAB function "Lndens" is intended for calculation of the probability density 
function of three-parameter lognormal distribution. The function is called by the function 
LNPF using command “Lndens(ske,me,se)”, and returns the value of probability density 
function. 
 
5. MATLAB function "Lndist(x,mu,sigma,sk)" 

MATLAB function "Lndist" is intended for calculation of the distribution function of 
three-parameter lognormal distribution. The function is called by the function LNPF using 
command “Lndist(skr,mr,sr),” and returns the value of the distribution function. 
 
6. MATLAB function "Ndinv(p)" 

MATLAB function "Ndinv" calculates the inverse distribution function of the normal 
distribution (determining the reliability index beta). The function is called by the function 
Action3 or Action3i using command “Ndinv(p)” (or “Ndinv(p,mu,sigma)” or Ndinv(p,mu)”), 
and returns the value of the inverse distribution function. 
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7. MATHCAD sheet"Generic.mcd" 
 MATHCAD function "Generic" is intended for investigation of the combination rules 
provided in EN 1990. A general structural member of the resistance r (including model 
uncertainty) is considered. 
 
8. MATHCAD sheet"Load effect.mcd" 
 MATHCAD sheet "LoadEffect" is intended for investigation of combination rules 
provided in EN 1990 by expressions (6.10), (6.10a) and (6.10b) considering three loads: G, Q 
and W. Turkstra's rule ( 50-year extremes of a leading and annual extremes of an 
accompanying action) is applied. 
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Attachment 1 – MATLAB function "generic(gR,wr,k)" 
 
 
function Gener=Gener(gR,wr,k)  
%  Program "Generic" is intended for investigation of the combination rules 
%  provided in EN 1990. 
%  A generic structural member of the resistance R (including model uncertainty) 
%  is considered.    
%  Function "Generic" calls function  
%     Action3i(mr,sr,skr, Rd,k,i), which further calls functions  
%     Ndinv(p), Lnpf (mr,sr,skr,me,se,ske), which calls 
%       Lndens(x,ske,me,se), Lndist(x,skr,mr,sr) and Ndinv(p) 
% 
%  INPUT data describing random variable R: Rd, gR, wR 
%   
%   VERSION 
%   MH, Klokner Institute, Czech Technical University in Prague, 1.08.2003 
% 
%   Input load ratio k = Wk/Qk used by the function "Action3i",  
 % k=0.00; % Input parameter that may be changed 
%   Characteristic of the resistance R 
 Rd=1; % may be chosen arbitrary 
 Rk=Rd*gR; % gR=1.15; gR given by a fixed value not related to wr and beta 
%   an alternative is indicated below in the first line of the loop for wr 
% 
%   Statistical parameters of R (having lognormal distribution) determined 
%   in the following loop for selected coefficients of variation wr  
 %for i= 3:3 % Range of the loop that may be adjusted.   
 %wr=0.05+(i-1)*0.05;  betat = 3.8; 
 % gR= exp(0.7*betat*wr)/exp(1.65*wr); Rk=Rd*gR; % alternatively 
 Kr=1; wKr=0.05; % lognormal distribution 
 mr=Kr*Rk*exp(1.645*wr); wr=(wr^2+wKr^2+wr^2*wKr^2)^0.5; 
 sr=mr*wr; skr=3*wr+wr^3; 
 % alternatively the mean mr=Rk/(1-1.645*wr) 
 Action3(mr,sr,skr,Rd,k) % Call function Action3i  
 %end 
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Attachment 2 – MATLAB function "Action3 generic(mr,sr,skr,Rd,k)" 
 
function Action3 = action3(mr,sr,skr,Rd,k) 
%  CALL 
%     Lnpf (mr,sr,skr,me,se,ske), which further calls LNDENS and LNDIST 
%  INPUT 
%     R: mr,sr,skr; E:me,se,ske; vector of real arguments 
%  OUPUT 
%     beta: vector of beta values 
%  VERSION 
%     Klokner Institute, Czech Technical University in Prague, 24.04.2002 
%  Laod factors and parameters: 
 gG=1.35; gQ=1.5; gW=1.5; psi1=0.7; psi2=0.6; wG=0.1; %psi1=psiQ, psi2=psiW 
% Characteristics of variable loads Q and W for k<=(1-psiQ)/(1-psiW) 
 if k<=(1-psi1)/(1-psi2); 
 mmQ=0.49; wQ=0.4; skQ=1.14; mmW=0.3; wW=0.5; skW=1.14; 
 else %Characteristics of variable loads Q and W for k>(1-psiW)/(1-psiQ) 
 mmQ=0.2; wQ=1.1; skQ=1.14; mmW=0.7; wW=0.35; skW=1.14; 
 end 
 
% Model uncertainties of actions 
 Ke=1; wKe=0.00; sKe=wKe*Ke;skKe=3*wKe+wKe^3; 
% Parameters k=Wk/Qk given in the function that calls Action3  
% Combination factors for expression (6.10) if k<=(1-psiQ)/(1-psiW)=0,75 or  k>(1-
psiW)/(1-psiQ)=0,75 
 if k<=(1-psi1)/(1-psi2); 
 ksi=1; psiQ=1; psiW=psi2;  
 else 
 ksi=1; psiQ=psi1; psiW=1; 
 end     
 
 %!!!!!!!!!!!!!!!!!!!!!!!!!Case A, (6.10) 
 %Effect of the load ratio CHI for expression (6.10) for the load ratio 
CHI=(Qk+Wk/(Gk+Qk+Wk))  
for n=1:21 %loop for CHI in the interval <0,1> 
 CHI(n)=0+(n-1)*0.0499; 
 mG(n)=Rd/(ksi*gG+(CHI(n).*(psiQ*gQ+k*psiW*gW))./((1-CHI(n))*(1+k))); 
 sG(n)=mG(n)*wG; 
 Qk(n)=CHI(n).*mG(n)./((1-CHI(n))*(1+k)); mQ(n)=Qk(n)*mmQ; sQ(n)=mQ(n)*wQ; 
  Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW; 
 me0(n)=mG(n)+mQ(n)+mW(n); se0(n)=sqrt(sG(n)^2+sQ(n)^2+sW(n)^2); 
we0(n)=se0(n)./me0(n); 
 ske0(n)=(sQ(n)^3*skQ+sW(n)^3*skW)./se0(n)^3; 
 me(n)=(mG(n)+mQ(n)+mW(n))*Ke; 
se(n)=me0(n)*Ke.*sqrt(wKe^2+we0(n)^2+we0(n)^2.*wKe^2); 
 
ske(n)=me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3; 
 %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW 
 pf(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); beta(n)= -ndinv(pf(n)); pft(n)=0.0000723; 
betat(n)=3.8; 
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 sg(n)=sqrt(sr^2+se(n)^2); 
 alG(n)=-mG(n)*sqrt(wG^2+wKe^2+wG^2*wKe^2)./sg(n); 
 alQ(n)=-mQ(n)*sqrt(wQ^2+wKe^2+wQ^2*wKe^2)./sg(n); 
 alW(n)=-mW(n)*sqrt(wW^2+wKe^2+wW^2*wKe^2)./sg(n); 
 ale(n)=-se(n)./sg(n); 
 alr(n)=sr./sg(n); 
end% end of the loop 
  % Check selected values      
 beta(1), beta(21), %The first and the last Beta 
 sg(1); 
 alr(1); ale(1); %The first and alr and alr 
 sr; se(1); 
 
 %!!!!!!!!!!!!!!!!!!!!!!!!!Case B, (6.10a) 
% Combination factors for expression (6.10a) for any k<=>(1-psiW)/(1-psiQ)=0,75 
  
 if k<=(1-psi1)/(1-psi2); 
 ksi=1; psiQ=psi1; psiW=psi2;  
 else 
 ksi=1; psiQ=psi1; psiW=psi2; 
 end     
  
for n=1:12 %loop for CHI in the interval <-1,1> 
 CHIa(n)=0+(n-1)*0.0499; 
 mG(n)=Rd/(ksi*gG+(CHIa(n).*(psiQ*gQ+k*psiW*gW))./((1-CHIa(n))*(1+k))); 
 sG(n)=mG(n)*wG; 
 Qk(n)=CHIa(n).*mG(n)./((1-CHIa(n))*(1+k)); mQ(n)=Qk(n)*mmQ; sQ(n)=mQ(n)*wQ; 
 Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW; 
 me0(n)=mG(n)+mQ(n)+mW(n); se0(n)=sqrt(sG(n)^2+sQ(n)^2+sW(n)^2); 
we0(n)=se0(n)./me0(n); 
 ske0(n)=(sQ(n)^3*skQ+sW(n)^3*skW)./se0(n)^3; 
 me(n)=(mG(n)+mQ(n)+mW(n))*Ke; 
se(n)=me0(n)*Ke.*sqrt(wKe^2+we0(n)^2+we0(n)^2.*wKe^2); 
 
ske(n)=me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3; 
 %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW 
 pfa(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betaa(n)= -ndinv(pfa(n)); 
end% end of the loop 
 
%!!!!!!!!!!!!!!!!!!!!!!!!!Case B, (6.10b) 
 if k<=(1-psi1)/(1-psi2); 
 ksi=0.85; psiQ=1; psiW=psi2;  
 else 
 ksi=0.85; psiQ=psi1; psiW=1; 
 end     
for n=1:19 %loop for CHI in the interval <-1,1> for expression (6.10b) 
 CHIb(n)=0.1+(n-1)*0.0499; 
 mG(n)=Rd/(ksi*gG+(CHIb(n).*(psiQ*gQ+k*psiW*gW))./((1-CHIb(n))*(1+k))); 
 sG(n)=mG(n)*wG; 
 Qk(n)=CHIb(n).*mG(n)./((1-CHIb(n))*(1+k)); mQ(n)=Qk(n)*mmQ; sQ(n)=mQ(n)*wQ; 
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 Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW; 
 me0(n)=mG(n)+mQ(n)+mW(n); se0(n)=sqrt(sG(n)^2+sQ(n)^2+sW(n)^2); 
we0(n)=se0(n)./me0(n); 
 ske0(n)=(sQ(n)^3*skQ+sW(n)^3*skW)./se0(n)^3; 
 me(n)=(mG(n)+mQ(n)+mW(n))*Ke; 
se(n)=me0(n)*Ke.*sqrt(wKe^2+we0(n)^2+we0(n)^2.*wKe^2); 
 
ske(n)=me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3; 
 %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW 
 pfb(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betab(n)= -ndinv(pfb(n)); 
end% end of the loop 
 
%!!!!!!!!!!!!!!!!!!!!!!!!!Case C, (6.10amod) 
 ksi=1; psiQ=0.0; psiW=0.0;  
 
%Effect of the load ratio CHI for expression (6.10amod)=(6.10c) 
for n=1:4 %loop for CHI in the interval <-1,1> 
 CHIc(n)=0+(n-1)*0.0499; 
 mG(n)=Rd/(ksi*gG+(CHIc(n).*(psiQ*gQ+k*psiW*gW))./((1-CHIc(n))*(1+k))); 
 sG(n)=mG(n)*wG; 
 Qk(n)=CHIc(n).*mG(n)./((1-CHIc(n))*(1+k)); mQ(n)=Qk(n)*mmQ; sQ(n)=mQ(n)*wQ; 
 Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW; 
 me0(n)=mG(n)+mQ(n)+mW(n); se0(n)=sqrt(sG(n)^2+sQ(n)^2+sW(n)^2); 
we0(n)=se0(n)./me0(n); 
 ske0(n)=(sQ(n)^3*skQ+sW(n)^3*skW)./se0(n)^3; 
 me(n)=(mG(n)+mQ(n)+mW(n))*Ke; 
se(n)=me0(n)*Ke.*sqrt(wKe^2+we0(n)^2+we0(n)^2.*wKe^2); 
 
ske(n)=me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3; 
 %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW 
 pfc(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betac(n)= -ndinv(pfc(n)); 
end% end of the loop 
 
 
%!!!!!!!!!!!!!!!!!!!!!!!!!Case D CSN (6.10) 
gG=1.2; gQ=1.4; gW=1.4; %alternative values og gamma 
 if k<=(1-psi1)/(1-psi2); 
 ksi=1; psiQ=1; psiW=psi2;  
 else 
 ksi=1; psiQ=psi1; psiW=1; 
 end     
 %Effect of the load ratio CHI for expression (6.10) 
 for n=1:21 %loop for CHI in the interval <0,1> 
 CHI(n)=0+(n-1)*0.0499; 
 mG(n)=Rd/(ksi*gG+(CHI(n).*(psiQ*gQ+k*psiW*gW))./((1-CHI(n))*(1+k))); 
 sG(n)=mG(n)*wG; 
 Qk(n)=CHI(n).*mG(n)./((1-CHI(n))*(1+k)); mQ(n)=Qk(n)*mmQ; sQ(n)=mQ(n)*wQ; 
  Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW; 
 me0(n)=mG(n)+mQ(n)+mW(n); se0(n)=sqrt(sG(n)^2+sQ(n)^2+sW(n)^2); 
we0(n)=se0(n)./me0(n); 
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 ske0(n)=(sQ(n)^3*skQ+sW(n)^3*skW)./se0(n)^3; 
 me(n)=(mG(n)+mQ(n)+mW(n))*Ke; 
se(n)=me0(n)*Ke.*sqrt(wKe^2+we0(n)^2+we0(n)^2.*wKe^2); 
 
ske(n)=me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3; 
 %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW 
 pfd(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betad(n)= -ndinv(pfd(n)); 
end% end of the loop 
 
 
%!!!!!!!!!!!!!!!!!!!!!!!!!Case E: BSI (6.10) 
ksi=1; psiQ=1; psiW=1; %reduction factor not considered 
% Combination factors for expression (6.10) for one k=0, or two k>0 
 Rd=Rd*1.15/1.1; % adjustement for different for gm=1.10;   
if k<=0.001; 
 gG=1.4; gQ=1.6; gW=1.4;  
 else 
 gG=1.2; gQ=1.2; gW=1.2;  
 end     
 %Effect of the load ratio CHI for expression (6.10) 
 for n=1:21 %loop for CHI in the interval <0,1> 
 CHI(n)=0+(n-1)*0.0499; 
 mG(n)=Rd/(ksi*gG+(CHI(n).*(psiQ*gQ+k*psiW*gW))./((1-CHI(n))*(1+k))); 
 sG(n)=mG(n)*wG; 
 Qk(n)=CHI(n).*mG(n)./((1-CHI(n))*(1+k)); mQ(n)=Qk(n)*mmQ; sQ(n)=mQ(n)*wQ; 
 Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW; 
 me0(n)=mG(n)+mQ(n)+mW(n); se0(n)=sqrt(sG(n)^2+sQ(n)^2+sW(n)^2); 
we0(n)=se0(n)./me0(n); 
 ske0(n)=(sQ(n)^3*skQ+sW(n)^3*skW)./se0(n)^3; 
 me(n)=(mG(n)+mQ(n)+mW(n))*Ke; 
se(n)=me0(n)*Ke.*sqrt(wKe^2+we0(n)^2+we0(n)^2.*wKe^2); 
 
ske(n)=me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3; 
 %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW 
 pfe(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betae(n)= -ndinv(pfe(n)); 
end% end of the loop 
 
% Ploting beta and pf and alpha versus CHI 
 
ksi=0.85; psiQ=psi1; psiW=psi2;gG=1.35;gQ=1.5;gW=1.5; 
 if k<=(1-psi1)/(1-psi2); 
 a=1; b=psi2;  
 else 
 a=psi1; b=1; 
 end     
CHIlim=gG*(1-ksi)*(1+k)/(gG*(1-ksi)*(1+k)+gQ*(a-psiQ)+gW*k*(b-psiW)) 
CHIlimc=gG*(1-ksi)*(1+k)/(gG*(1-ksi)*(1+k)+gQ*a+gW*k*b) 
 for n=1:14 
 B(n)=3+(n-1)*0.15; 
 C(n)=10^(-2-(n-1)*0.35); 
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 end 
 maxbeta=ceil(max(beta));  
 maxpf=ceil(100*max(pf))/100; 
 h=figure(1); 
  
% plot beta versus CHI 
 subplot(2,1,1)%CSN Beta: ,CHI,betad,'r.', BSI beta CHI,betae,'k--' 
 plot(CHI,beta,'r',CHI,betae,'k--',CHIa,betaa,'b',CHIb,betab,'b',CHIc,betac,'g--',CHI,betat,'k-
.',CHIlimc,B,'g.',CHIlim,B,'b.','LineWidth',1.5,'MarkerSize',5) %betaa,CHI,betab,CHI,betat, 
 grid,axis([0,1,3,6]) % maxbeta 
 ylabel('Index Beta') 
 subplot(2,1,2) 
% plot pf versus CHI 
 semilogy(CHI,pf,'r',CHI,pfe,'k--',CHIa,pfa,'b',CHIb,pfb,'b',CHIc,pfc,'g--',CHI,pft,'k-
.',CHIlimc,C,'g.',CHIlim,C,'b.','LineWidth',1.5,'MarkerSize',5) 
 %plt using semilogarthmical scale, ,pfa,CHI,pfb,CHI 
 grid,axis([0,1,1e-8,maxpf]) 
 ylabel('Probability Pf') 
  
 %subplot(3,1,3) % not generally active 
% plot Alphas versus CHI 
 %plot(CHI,alG,CHI,alQ,CHI,alW,CHI,alr,CHI,ale, 
 %'LineWidth',1.5) %Alphasplt scale, ,pfa,CHI,pfb,CHI 
 %grid,axis([0,1,-1,1]) 
 %xlabel('Load ratio CHI=(Qk+Wk)/(Gk+Qk+Wk)') 
 %ylabel('Alphas for A - (6.10)') 
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Attachment 3 – MATLAB function "Lnpf(mr,sr,skr,me,se,ske)" 
 
function pf = Lnpf (mr,sr,skr,me,se,ske) 
%  DESCRIPTION, 19.09.1999 
%     Lnpf evaluates the probability of failure pf considering the fundamental  
%     limit state function G = R - E. 
%  CALL 
% val = Lnpf (mr,sr,skr,me,se,ske); 
%  FUNCTIONS USED 
%     lndens(x,ske,me,se).*Lndist(x,skr,mr,sr) 
%  INPUT 
%     mr    : the mean of R 
%     sr    : standard deviation of R 
%     skr   : coefficient of skewness of R (must be given) 
%     me    : the mean of E 
%     se    : standard deviation of E 
%     ske   : coefficient of skewness of E (must be given) 
%  OUPUT 
%     val   : failure probability pf 
%  VERSION 
%     MH, Czech Technical University in Prague, Klokner Institute, 2.8.2003 
%  Initialization 
cr=(0.5*skr+(skr^2/4+1)^0.5)^(1/3)-(-0.5*skr+(skr^2/4+1)^0.5)^(1/3);%constant of 
lognormal R 
ce=(0.5*ske+(ske^2/4+1)^0.5)^(1/3)-(-0.5*ske+(ske^2/4+1)^0.5)^(1/3);%constant of 
lognormal E 
if cr==0 
 r0=10^10; 
else  
 r0=mr-sr/cr;         %bound of lognormal distribution of R 
end  
if ce==0 
 e0=10^10; 
else 
 e0=me-se/ce;         %bound of lognormal distribution of E 
end 
% Determination of integration interval 
k=10; % Coefficient of standard deviation 
if skr>0;            %R positive 
 if ske>0;         %R and E positive 
 a=max(r0,e0); 
 b=min(mr+k*sr,me+k*se);     % limit 6*sr 
 else 
 if ce==0       %R pos, E sym 
 a=max(r0,me-k*se); 
 b=min(mr+k*sr,me+k*se); 
 else           % R pos E neg 
 a=max(r0,me-k*se); 
  b=min(e0,mr+k*sr); 
 end 
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 end 
else                 % R sym or neg 
 if cr==0;         % R sym c=0 (sk=0) 
 if ce==0       % both R and E sym 
 a=max(mr-k*sr,me-k*se); 
 b=min(mr+k*sr,me+k*se); 
 else 
 if ske>0    %R sym, E pos 
 a=max(mr-k*sr,e0); 
 b=min(mr+k*sr,me+k*se); 
 else        % R sym, E neg 
 a=max(mr-k*sr,me-k*se); 
 b=min(mr-k*sr,e0); 
 end 
 end    
 else              % R neg 
 if ske>0;    % R neg, E pos 
 a=max(mr-k*sr,e0); 
 b=min(r0,me+k*se); 
 else           % E sym or neg     
 if ce==0    % R neg, E sym 
 a=max(mr-k*sr,me-k*se); 
 b=min(r0,me+k*se); 
 else        % R neg, E neg 
  a=max(mr-k*sr,me-k*se); 
 b=min(e0,r0); 
 end 
 end 
 end 
end 
% Integration interval    
if a<0 
 a=0;     
 end 
 delta=b-a; 
 a=a+0.00000001*delta; % adjusted integration limits to avoid singularity 
 b=b-0.00000001*delta; 
 if a>b 
 '  error in input data, a>b, increase the lower limit of the design parameter' 
 pause 
else 
 n=20; inc=(b-a)/n; Y=0; % parameters of integration, n may adjusted if needed  
for x=a:inc:b; % Integration of failure probability by trapezoidal rule 
 e= Lndens(x,me,se,ske); % call Lndens 
 r= Lndist(x,mr,sr,skr); % call Lndist 
 Y=Y+ e*r; % sum of e*r 
end 
 pf=inc*Y;  
end 
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Attachment 4 – MATLAB function"Lndens(x,mu,sigma,sk)" 
 
function val = Lndens (x,mu,sigma,sk) 
%  DESCRIPTION 
%   NDENS evaluates the one-dimensional normal density function. 
%  CALL 
%     val = Lndens (x,sk); 
%     val = Lndens (x,sk,mu,sigma); 
%  INPUT 
%     x     : real vector of arguments 
%     sk    : coefficient of skewness (must be given) 
%     mu    : mean value; optional; default = 0.0 (i.e. standard) 
%     sigma : std. dev. > 0; optional; default = 1.0 (i.e. standard) 
%  OUPUT %     val: vector of normal density values for the x's 
%  VERSION %     Milan Holicky, Czech Technical University in Prague, Klokner Institute 
%     18.09.1999 
if nargin < 3 
 mu    = 0.0; 
 sigma = 1.0; 
end 
%  Evaluate 
x   = (x-mu)/sigma;                        % normalize 
c=(0.5*sk+(sk^2/4+1)^0.5)^(1/3)-(-0.5*sk+(sk^2/4+1)^0.5)^(1/3);%constant of lognormal 
if c==0; % sk=0  
 x0=10^10; 
 else 
 x0=-1/c; %bound of the distribution    
 end 
if sk>0; %check of x range 
 if x0>x 
 error ('x out of range') 
 else 
 end 
else 
 if x0<x 
 error('x out of range') 
 else 
 end 
end 
% 
if abs(c)>0.0001; %if for c=0 (sk=0) 
 tt=sign(sk)*(log(abs(x+1/c))+log(abs(c))+0.5*log(1+c^2))/((log(1+c^2))^0.5); 
 else 
 tt=x; 
 end 
if abs(c)>0.0001; %if for c=0 (sk=0) 
 val = exp(-0.5*tt.^2)/(sqrt(2*pi)*sigma*abs(x+1/c)*(log(1+c^2))^0.5);  
else 
 val = exp(-0.5*tt.^2)/(sigma*sqrt(2*pi));    
end 
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Attachment 5 – MATLAB function"Lndist(x,mu,sigma,sk)" 
 
function val = Lndist (x,mu,sigma,sk) 
%  DESCRIPTION, 18.09.1999 
%     LNDIST evaluates the one-dimensional lognormal distribution function. 
%  CALL 
%     val = lndist (x,sk) 
%     val = lndist (x,sk,mu,sigma) 
%  INPUT 
%     x     : real vector of arguments. 
%     sk    : coefficient of skewness; default = 0.0 (i.e. normal distribution) 
%     mu    : mean value; optional; default = 0.0 (i.e. standard). 
%     sigma : std. dev. > 0; optional; default = 1.0 (i.e. standard). 
%  OUPUT 
%     val   : vector of the lognormal distribution evaluated at the x's. 
%  VERSION 
%     Milan Holicky, Czech Technical University in Prague, Klokner Institute 
%  Initialization 
if nargin < 3 
 mu    = 0.0; 
 sigma = 1.0; 
end 
x   = (x-mu)/sigma;             % standardize 
c=(0.5*sk+(sk^2/4+1)^0.5)^(1/3)-(-0.5*sk+(sk^2/4+1)^0.5)^(1/3);%constant of lognormal 
if c==0; % sk=0  
 x0=10^10; 
 else 
 x0=-1/c; %bound of the distribution    
 end 
if sk>0; %check of x range 
 if x0>x 
 error ('x out of range') 
 else 
 end 
else 
 if x0<x 
 error('x out of range') 
 else 
 end 
end 
if abs(c)>0.01; %if for c=0 (sk=0) 
 tt=sign(sk)*(log(abs(x+1/c))+log(abs(c))+0.5*log(1+c^2))/((log(1+c^2))^0.5); 
 else 
 tt=x; 
end 
val = (1+erf(tt/sqrt(2)))/2;     % transformed error function 
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Attachment 6 – MATLAB function"Ndinv(x,mu,sigma)" 
 
function [x] = norminv(p,mu,sigma) 
%NORMINV Inverse of the normal cumulative distribution function (cdf). 
%   X = NORMINV(P,MU,SIGMA) returns the inverse cdf for the normal 
%   distribution with mean MU and standard deviation SIGMA, evaluated at 
%   the values in P.   
%   Default values for MU and SIGMA are 0 and 1, respectively. 
% 
%   MH, Klokner Institute, CTU Prague 4.8.2003  
%    
if nargin < 2 
 mu = 0; 
end 
if nargin < 3 
 sigma = 1; 
end 
% Return NaN for out of range parameters or probabilities. 
 sigma(sigma <= 0) = NaN; 
 p(p < 0 | 1 < p) = NaN; 
 x0 = -sqrt(2).*erfcinv(2*p); 
 x = sigma.*x0 + mu; 
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Attachment 7 – MATHCAD sheet"Generic.Mcd” 
 
 
 

 
 

Resistance varables: μR0 = ω*R0k: wR0 0.0 0.12, 0.35..:= ω wR0( ) exp 1.65 wR0⋅( ):= αR0 wR0( ) wR0 3⋅ wR03+:=

Model uncertainty ρ, Lognormal distribution: μρ 1.0:= wρ 0.05:= αρ 3 wρ⋅ wρ
3

+:=

2 Determination of the load variables G, Q and W for a given resistance Rd:
Characteristic values Gk=μG, Qk and Wk determined assuming Ed=Rd. Thus γG*Gk+γQ*Qk+γW*Wk=Rd 

μG χ γG, γQ, γW,( ) Rd

γG
γQ k γW⋅+( ) χ⋅

1 k+( ) 1 χ−( )⋅
+⎡

⎢
⎣

⎤
⎥
⎦

:=
Check: μG 0.5 1.35, 1.5, 1.5,( ) 0.351=

Qk χ γG, γQ, γW,( ) χ μG χ γG, γQ, γW,( )
1 k+( ) 1 χ−( )⋅

:= Wk χ γG, γQ, γW,( ) k Qk χ γG, γQ, γW,( )⋅:= Qk 0.5 1.35, 1.5, 1.5,( ) 0.351=

Ed χ γG, γQ, γW,( ) γG μG χ γG, γQ, γW,( )⋅ γQ Qk χ γG, γQ, γW,( )⋅+ γW Wk χ γG, γQ, γW,( )⋅+:= Wk 0.5 1.35, 1.5, 1.5,( ) 0=

Normal distribution of G: σG χ γG, γQ, γW,( ) wG μG χ γG, γQ, γW,( )⋅:= Ed 0.5 1.35, 1.5, 1.5,( ) 1=

Gumbel distribution of Q: μQ χ γG, γQ, γW,( ) mQ Qk χ γG, γQ, γW,( )⋅:= σQ χ γG, γQ, γW,( ) wQ μQ χ γG, γQ, γW,( )⋅:=

Gumbel distribution of W μW χ γG, γQ, γW,( ) mW Wk χ γG, γQ, γW,( )⋅:= σW χ γG, γQ, γW,( ) wW μW χ γG, γQ, γW,( )⋅:=

3 Load effect E = θ ∗ (G+Q+W) = θ*E0:

The mean and st. deviation of E0: μE0 χ γG, γQ, γW,( ) μG χ γG, γQ, γW,( ) μQ χ γG, γQ, γW,( )+ μW χ γG, γQ, γW,( )+:=

σE0 χ γG, γQ, γW,( ) wG2 μG χ γG, γQ, γW,( )2
⋅ wQ2 μQ χ γG, γQ, γW,( )2

⋅+ wW2 μW χ γG, γQ, γW,( )2
⋅+:=

 Mathcad sheet "Generic" is intended to investigate combination rules provided in EN 
1990 by expressions (6.10), (6.10a) and (6.10b) considering a generic structural memeber.
Turkstra's rule ( 50 years extremes of a leading and annual extremes for accompnying 
action) is applied for the reference period of 50 years.  MH, August 2002.

 Design expression: R0k / γΜ  = (ξ) γG*Gk + (γQ)γQ*Qk +(γW)*ψW*Wk 
 Limit state function: g(X) = ρ ∗ R0  − θ * (G + Q + W), R0=K*fu
    Resistance of an element R = ρ * R0 is described by two parameter lognormal  
distribution LN(μR,σR,), basic variables R0 by LN(ωRk, 0.06μR), ω =1/(1 − 2*wR0) and ρ by 
LN(1.1, 0.05).
 Load effect E = θ * (G + Q + W) is discribed by a three parameter lognormal distribution 
LNα (μE,σE,α E), permanent load G by N(Gk, 0.1*Gk), 50 years imposed load Q  by GUM(0.6 
Qk, 0.35 μQ), annual wind load W by GUM(0.3Wk, 0.5μW), uncertainty θ by LN(1.0, 0.05).
 Parameters: χ=( Qk+Wk)/(Gk+Qk+Wk), k=Wk/Qk, factors γm, γG, γQ,γW, ξ , ψQ, ψW.

1 Input data: Constants: ξ 0.85:= ψQ 0.70:= ψW 0.60:= k 0.0:= Rd 1:=

Range variables:χ 0 0.09, 0.99..:= γm 1.0 1.05, 1.5..:= γG 1.1 1.15, 1.5..:= γQ 1.2 1.25, 1.6..:= γW 1.2 1.25, 1.6..:=

Load parameters: Normal distribution of G: μG = Gk wG 0.1:=

Gumbel distribution of Q: μQ = mQ*Qk mQ 0.6:= wQ 0.35:= αQ 1.14:=

Gumbel distribution of W: μW = mW*Wk mW 0.3:= wW 0.5:= αW 1.14:=

Model uncertainty θ, Lognormal distribution: μθ 1.0:= wθ 0.05:= αθ 3 wθ⋅ wθ
3

+:=
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sE χ γG, γQ, γW,( ) ln 1 C χ γG, γQ, γW,( )2
+( ):= x0 χ γG, γQ, γW,( ) μE χ γG, γQ, γW,( ) 1

C χ γG, γQ, γW,( ) σE χ γG, γQ, γW,( )−:=

Probability density of E, approximation by three parameter lognormal distribution: x0 0.4 1.35, 1.5, 1.5,( ) 0.189=

Eln x χ, γG, γQ, γW,( ) dlnorm x x0 χ γG, γQ, γW,( )− mE χ γG, γQ, γW,( ), sE χ γG, γQ, γW,( ),( ):=

5 Resistance variables R = ρ*R0: μR γm wR0,( ) μρ Rd⋅ γm⋅ ω wR0( )⋅:= Check: μR 1.15 0.15,( ) 1.473=

wR wR0( ) wR02 wρ
2

+ wR02 wρ
2

⋅+:= σR γm wR0,( ) wR wR0( ) μR γm( ):= wR 0.15( ) 0.158=

6 Two parameter lognormal distribution of R:

Transformed variable: mR γm wR0,( ) ln μR γm wR0,( )( ) 0.5( ) ln 1 wR wR0( )2
+( )⋅−:= sR γm wR0,( ) ln 1 wR wR0( )2

+( ):=

Distribution function Rln x γm, wR0,( ) plnorm x mR γm wR0,( ), sR γm wR0,( ),( ):= mR 1 015,( ) 22.038= sR 1 0.15,( ) 0.157=

μE0 0.4 1.35, 1.5, 1.5,( ) 0.596=The coefficient of variation of E0 (without model uncertainty θ):

wE0 χ γG, γQ, γW,( ) σE0 χ γG, γQ, γW,( )
μE0 χ γG, γQ, γW,( ):= μE χ γG, γQ, γW,( ) μθ μE0 χ γG, γQ, γW,( )⋅:= wE0 0.4 1.35, 1.5, 1.5,( ) 0.123=

The coefficient of variation of E: wE χ γG, γQ, γW,( ) wE0 χ γG, γQ, γW,( )2
wθ

2
+ wE0 χ γG, γQ, γW,( )2

wθ
2

⋅+:=

The standard deviation of E: σE χ γG, γQ, γW,( ) μE χ γG, γQ, γW,( ) wE χ γG, γQ, γW,( )⋅:=

4 Three parameter lognormal distribution of E: wE 0.4 1.35, 1.5, 1.5,( ) 0.133=

Skewness of E0:
αE0 χ γG, γQ, γW,( ) σQ χ γG, γQ, γW,( )3

αQ⋅ σW χ γG, γQ, γW,( )3
αW⋅+

σE0 χ γG, γQ, γW,( )3
:=

αE0 0.4 1.35, 1.5, 1.5,( ) 0.614=
Skewness of E:

αE χ γG, γQ, γW,( ) wE0 χ γG, γQ, γW,( )3
αE0 χ γG, γQ, γW,( )⋅ 6 wθ

2
⋅ wE0 χ γG, γQ, γW,( )2

⋅+ wθ
3

αθ⋅+

wE χ γG, γQ, γW,( )3
:=

αE 0.4 1.35, 1.5, 1.5,( ) 0.591=
Parameter C:

C χ γG, γQ, γW,( ) αE χ γG, γQ, γW,( )2
4+ αE χ γG, γQ, γW,( )+

⎛
⎝

⎞
⎠

1

3
αE χ γG, γQ, γW,( )2

4+ αE χ γG, γQ, γW,( )−
⎛
⎝

⎞
⎠

1

3
−

2

1

3

:=

Parameters of transformed variable:

mE χ γG, γQ, γW,( ) ln C χ γG, γQ, γW,( )( )− ln σE χ γG, γQ, γW,( )( )+ 0.5( ) ln 1 C χ γG, γQ, γW,( )2
+( )⋅−:=
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Auxiliary: χ0 3 3.5, 5..:=

χa 0 0.05, χl 0.05+..:= χb χla 0.01− χla 0.04+, 0.999..:= χam 0 0.05, χla 0.04+..:= Check: 

χc 0 0.05, χla 0.04+..:= βln 0 1.15, 0.15, 1.35, a 1.5⋅, b 1.5⋅,( ) 3.591= βln 0.999 1.15, 0.15, 1.35, a 1.5⋅, b 1.5⋅,( ) 3.583=

Turkstra's for 50 years: wG 0.1= mQ 0.6= wQ 0.35= mW 0.3= wW 0.5= k 0= χl 0.31= χla 0.119=

0 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

5

5.5

6

.

Figure 1: Reliability index β  corresponding to equation (6.10), (6.10a) and (6.10b).

Note that expression (6.10) is represented by solid red line, expressions (6.10a) and  
(6.10b) by solid blue line, expression (6.10a,mod) by dashed green line, BSI 
combination by dashed brown line, CSN combination by red dashed line,  target 
reliability index by horizontal black dashed line.  The twin expressions (6.10a) and 
6.10b)  provide the most uniform distribution of the reliability index β  against the load 
ratio χ with reliability index greater than the target value β = 3,8 for majority of χ. 

7 Failure probability and reliability index β : d χ γG, γQ, γW,( ) if x0 χ γG, γQ, γW,( ) 0≤ 0, x0 χ γG, γQ, γW,( ),( ):=

pf50 χ γm, wR0, γG, γQ, γW,( )
d χ γG, γQ, γW,( )

∞
xEln x χ, γG, γQ, γW,( ) Rln x γm, wR0,( )⌠

⎮
⌡

d:= d 0.4 1.35, 1.5, 1.5,( ) 0.189=

pf50 0.0 1.15, 0.15, 1.35, 1.5, ψW 1.5⋅,( ) 1.645 10 4−
×=

βln χ γm, wR0, γG, γQ, γW,( ) qnorm pf50 χ γm, wR0, γG, γQ, γW,( ) 0, 1,( )−:= βln 0.0 1.15, 0.15, 1.35, 1.5, ψW 1.5⋅,( ) 3.591=

8 Reliability index β  versus ratio χ: limit for dominant action:  k0
1 ψQ−

1 ψW−
:= Check: k0 0.75=

a if k k0≤ 1, ψQ,( ):= b if k k0> 1, ψW,( ):= a 1= b 0.6=

Limit value of χ for (6.10a) and (6.10b): χχ γG γQ, γW,( ) γG 1 ξ−( )⋅ 1 k+( )
γG 1 ξ−( )⋅ 1 k+( ) γQ a ψQ−( )⋅ γW k⋅ b ψW−( )⋅+⎡⎣ ⎤⎦+

:=

Limit of χ for (6.10a-mod) and (6.10b): χχa γG γQ, γW,( ) γG 1 ξ−( )⋅ 1 k+( )
γG 1 ξ−( )⋅ 1 k+( ) γQ a⋅ γW k⋅ b⋅+( )+

:= χla χχa 1.35 1.5, 1.5,( ):=

χl χχ 1.35 1.5, 1.5,( ):=Target probability βt 3.8:=
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wW 0.5=mW 0.3=wQ 0.35=mQ 0.6=

k 0=Parameters :

Figure 3: Reliability index β  
corresponding to expression 
(6.10) versus partial factor γm 
and parameter χ.

β2 β2t,

β2t χ γm,( ) 3.8:=β2 χ γm,( ) βln χ γm, 0.10, 1.2, a 1.4⋅, b 1.4⋅,( ):=10 Reliability index β  versus γm a χ:

wW 0.5=mW 0.3=wQ 0.35=mQ 0.6=

k 0=Parameters :

Figure 2: Reliability index β  
corresponding to expression 
(6.10) versus partial factors 
γG a γQ.

β1 β1t,

β1t γG γQ,( ) 3.8:=β1 γG γQ,( ) βln 0.4 1.15, 0.15, γG, a γQ⋅, b γQ⋅,( ):=9 Reliability index β  versus γG a γQ:
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wW 0.5=mW 0.3=wQ 0.35=mQ 0.6=

k 0=Parameters :

Figure 5: Reliability index β  
corresponding to expression 
(6.10) versus parameter γR 
and the coefficient of variation 
wR.

β4 β4t,

β4t γm wR0,( ) 3.8:=β4 γm wR0,( ) βln 0.4 γm, wR0, 1.2, a 1.4⋅, b 1.4⋅,( ):=12 Reliability index β  versus γm a wR:

wW 0.5=mW 0.3=wQ 0.35=mQ 0.6=

k 0=Parameters :

Figure 4: Reliability index β  
corresponding to expression 
(6.10) versus parameter χ and 
the coefficient of variation wR.

β2 β2t,

β2t χ wR0,( ) 3.8:=β2 χ wR0,( ) βln χ 1.15, wR0, 1.35, a 1.5⋅, b 1.5⋅,( ):=11 Reliability index β  versus γm a χ:
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Attachment 8 – MATHCAD sheet"LoadEffect.mcd" 
 

 
 

μW = mW*Wk mW 0.3:= wW 0.5:= αW 1.14:=

Model uncertainty Model uncertainty θ, Lognormal distribution: μθ 1.0:= wθ 0.05:= αθ 3 wθ⋅ wθ
3

+:=

4 Determination of the load variables G, Q and W for a given load effect Ed = Rd:
Characteristic values Gk=μG, Qk and Wk determined assuming Ed=Rd. Thus γG*Gk+γ Q*Qk+γW*Wk=Rd 

μG χ γG, γQ, γW,( ) Ed

γG
γQ k γW⋅+( ) χ⋅

1 k+( ) 1 χ−( )⋅
+⎡

⎢
⎣

⎤
⎥
⎦

:=
Check: μG 0.4 1.35, 1.5, 1.5,( ) 0.426=

Qk χ γG, γQ, γW,( ) χ μG χ γG, γQ, γW,( )
1 k+( ) 1 χ−( )⋅

:= Wk χ γG, γQ, γW,( ) k Qk χ γG, γQ, γW,( )⋅:= Qk 0.40 1.35, 1.5, 1.5,( ) 0.284=

Ed χ γG, γQ, γW,( ) γG μG χ γG, γQ, γW,( )⋅ γQ Qk χ γG, γQ, γW,( )⋅+ γW Wk χ γG, γQ, γW,( )⋅+:= Wk 0.5 1.35, 1.5, 1.5,( ) 0=

Normal distribution of G: σG χ γG, γQ, γW,( ) wG μG χ γG, γQ, γW,( )⋅:= Ed 0.5 1.35, 1.5, 1.5,( ) 1=

Gumbel distribution of Q: μQ χ γG, γQ, γW,( ) mQ Qk χ γG, γQ, γW,( )⋅:= σQ χ γG, γQ, γW,( ) wQ μQ χ γG, γQ, γW,( )⋅:=

Gumbel distribution of W μW χ γG, γQ, γW,( ) mW Wk χ γG, γQ, γW,( )⋅:= σW χ γG, γQ, γW,( ) wW μW χ γG, γQ, γW,( )⋅:=

5 Load effect E = θ ∗ (G+Q+W) = θ*E0:

The mean and st. deviation of E0: μE0 χ γG, γQ, γW,( ) μG χ γG, γQ, γW,( ) μQ χ γG, γQ, γW,( )+ μW χ γG, γQ, γW,( )+:=

σE0 χ γG, γQ, γW,( ) wG2
μG χ γG, γQ, γW,( )2

⋅ wQ2
μQ χ γG, γQ, γW,( )2

⋅+ wW2
μW χ γG, γQ, γW,( )2

⋅+:=

MATHCADsheet "LoadEfect"
 Mathcad sheet "LoadEffect" is intended for investigation of combination rules 
provided in EN 1990 by expressions (6.10), (6.10a) and (6.10b) considering three loads: G,
Q and W. Turkstra's rule ( 50 years extremes of a leading and annual extremes of an 
accompnying action) is applied.  MH, May 2003.
 Design Load effect: Ed  = (ξ) γG*Gk + (γQ)γQ*Qk +(γW
 Stochastic model: E =  θ * (G + Q + W)
 Load effect E = θ * (G + Q + W) is discribed by a three parameter lognormal distribution 
LNα (μE,σE,α E), permanent load G by N(Gk, 0.1*Gk), 50 years imposed load Q  by GUM(0.6 
Qk, 0.35 μQ), annual wind load W by GUM(0.3Wk, 0.5μW), uncertainty θ by LN(1.0, 0.05).
 Parameters: χ=( Qk+Wk)/(Gk+Qk+Wk), k=Wk/Qk, factors γG, γQ,γW, ξ , ψQ, ψW.

1 Input data: Normailised load effect Ed 1:=

Range variables:χ 0.001 0.01, 0.99..:= γG 1. 1.1, 1.9..:= γQ 1.2 1.25, 1.6..:= γW 1.2 1.25, 1.6..:=

Reduction factors: ξ 0.85:= ψQ 0.70:= ψW 0.60:= Loasd ratio: k 0.0:=

2 Deterministic glabal factor: 

Global load factor according to EN 1990 γ χ γG, γQ, γW,( ) γG 1 χ−( )⋅ γQ k γW⋅+( ) χ

1 k+( )
⋅+:=

3 Probabilistic models

Permanent load G: Normal distribution of G: μG = Gk wG 0.1:=

Variable load Q: Gumbel distribution of Q: μQ = mQ*Qk mQ 0.6:= wQ 0.35:= αQ 1.14:=

Variable load W: Gumbel distribution of W:
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mE χ γG, γQ, γW,( ) ln C χ γG, γQ, γW,( )( )− ln σE χ γG, γQ, γW,( )( )+ 0.5( ) ln 1 C χ γG, γQ, γW,( )2
+( )⋅−:=

sE χ γG, γQ, γW,( ) ln 1 C χ γG, γQ, γW,( )2
+( ):= x0 χ γG, γQ, γW,( ) μE χ γG, γQ, γW,( ) 1

C χ γG, γQ, γW,( ) σE χ γG, γQ, γW,( )−:=

Probability density of E, approximation by three parameter lognormal distribution: x0 0.4 1.35, 1.5, 1.5,( ) 0.189=

Eln x χ, γG, γQ, γW,( ) dlnorm x x0 χ γG, γQ, γW,( )− mE χ γG, γQ, γW,( ), sE χ γG, γQ, γW,( ),( ):=

7 Theoretical value of the global factor γ  for a given exceedance probability p of Ed:

p = P{ E > Ed } p 0.001 0.0011, 0.006..:= Probability considered in EN: 1 pnorm 0.7 3.8⋅ 0, 1,( )− 3.907 10 3−
×=

pp Ed χ, γG, γQ, γW,( ) plnorm Ed x0 χ γG, γQ, γW,( )− mE χ γG, γQ, γW,( ), sE χ γG, γQ, γW,( ),( ):=

Ed p χ, γG, γQ, γW,( ) x0 χ γG, γQ, γW,( ) qlnorm 1 p− mE χ γG, γQ, γW,( ), sE χ γG, γQ, γW,( ),( )+:=

Ek χ γG, γQ, γW,( ) μG χ γG, γQ, γW,( ) Qk χ γG, γQ, γW,( )+ Wk χ γG, γQ, γW,( )+:= pp 0.8 0.4, 1.35, 1.5, 1.5,( ) 0.986=

Ed 0.002 0.4, 1.35, 1.5, 1.5,( ) 0.884=
γp p χ, γG, γQ, γW,( ) Ed p χ, γG, γQ, γW,( )

Ek χ γG, γQ, γW,( ):=
γp 0.002 0.3, 1.35, 1.5, 1.5,( ) 1.228=

γp 0.002 0.3, 1.5, 1.5, 1.5,( ) 1.228=

The coefficient of variation of E0 (without model uncertainty θ): μE0 0.4 1.35, 1.5, 1.5,( ) 0.596=

wE0 χ γG, γQ, γW,( ) σE0 χ γG, γQ, γW,( )
μE0 χ γG, γQ, γW,( ):= μE χ γG, γQ, γW,( ) μθ μE0 χ γG, γQ, γW,( )⋅:= wE0 0.4 1.35, 1.5, 1.5,( ) 0.123=

The coefficient of variation of E: wE χ γG, γQ, γW,( ) wE0 χ γG, γQ, γW,( )2
wθ

2
+ wE0 χ γG, γQ, γW,( )2

wθ
2

⋅+:=

The standard deviation of E: σE χ γG, γQ, γW,( ) μE χ γG, γQ, γW,( ) wE χ γG, γQ, γW,( )⋅:=

6 Three parameter lognormal distribution of E: wE 0.4 1.35, 1.5, 1.5,( ) 0.133=

Skewness of E0:
αE0 χ γG, γQ, γW,( ) σQ χ γG, γQ, γW,( )3

αQ⋅ σW χ γG, γQ, γW,( )3
αW⋅+

σE0 χ γG, γQ, γW,( )3
:=

αE0 0.4 1.35, 1.5, 1.5,( ) 0.614=Skewness of E:

αE χ γG, γQ, γW,( ) wE0 χ γG, γQ, γW,( )3
αE0 χ γG, γQ, γW,( )⋅ 6 wθ

2
⋅ wE0 χ γG, γQ, γW,( )2

⋅+ wθ
3

αθ⋅+

wE χ γG, γQ, γW,( )3
:=

αE 0.4 1.35, 1.5, 1.5,( ) 0.591=
Parameter C:

C χ γG, γQ, γW,( ) αE χ γG, γQ, γW,( )2
4+ αE χ γG, γQ, γW,( )+

⎛
⎝

⎞
⎠

1

3
αE χ γG, γQ, γW,( )2

4+ αE χ γG, γQ, γW,( )−
⎛
⎝

⎞
⎠

1

3
−

2

1

3

:=

Parameters of transformed variable:
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χ0 1 1.1, 1.3..:=

χa 0 0.05, χl 0.05+..:= χb χla 0.01− χla 0.04+, 0.999..:= χc 0 0.05, χla 0.04+..:= Check: χl 0.31=

χla 0.116=Turkstra's for 50 years: wG 0.1= mQ 0.6= wQ 0.35= mW 0.3= wW 0.5= k 0=

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

.

Figure 1: Deterministic global load factor γE versus χ,  code values corresponding 
to equation (6.10), (6.10a) and (6.10b).

The global load factor γE corresponding to expression (6.10) - combination A is 
represented by solid red line, factor corresponding to expressions (6.10a) and  (6.10b) -
combination B by blue line and factor corresponding to expression (6.10a,mod)  - 
combination C by dashed green line. Vertical dashed lines indicate boundaries for 
validity of expressions (6.10a) and  (6.10b) or expressions (6.10a,mod) and  (6.10b). 

8 The global load factor γ  versus ratio χ: limit for dominant action: k0
1 ψQ−

1 ψW−
:= Check: k0 0.75=

Auxiliary quantities: a if k k0≤ 1, ψQ,( ):= b if k k0> 1, ψW,( ):= a 1= b 0.6=

Limit value of χ for (6.10a) and (6.10b): χχ γG γQ, γW,( ) γG 1 ξ−( )⋅ 1 k+( )
γG 1 ξ−( )⋅ 1 k+( ) γQ a ψQ−( )⋅ γW k⋅ b ψW−( )⋅+⎡⎣ ⎤⎦+

:=

Limit of χ for (6.10a-mod) and (6.10b): χχa γG γQ, γW,( ) γG 1 ξ−( )⋅ 1 k+( )
γG 1 ξ−( )⋅ 1 k+( ) γQ a⋅ γW k⋅ b⋅+( )+

:= χla χχa 1.4 1.6, 1.6,( ):=

χl χχ 1.35 1.5, 1.5,( ):=Target probability βt 3.8:= Auxiliary:
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Figure 3: Global factor γ  versus 
probability p and load ratio χ 
for load combination given by 
equation (6.10).

Γ 0.004 0.35,( ) 1.198=

b 0.6=a 1=

wW 0.5=mW 0.3=

wQ 0.35=mQ 0.6=

k 0=Parameters :

Γ γγ,

γγ p χ,( ) γ χ 1 1.35⋅, 1 1.5⋅, ψW 1.5⋅,( ):=

Γ p χ,( ) γp p χ, γG, a γQ⋅, b γW⋅,( ):=γW 1.5:=γQ 1.5:=γG 1.35:=9 Global index γ versus χ and γQ 

Figure 2: Global load factor γ  versus χ,  theoretical and deterministic values 
corresponding to equation (6.10), (6.10a) and (6.10b).

. .0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5
γp 0.001 χ, 1.35, 1.5, 1.5,( )

γp 0.002 χ, 1.35, 1.5, 1.5,( )

γp 0.004 χ, 1.35, 1.5, 1.5,( )

γ χ 1.35, 1.5, ψW 1.5⋅,( )

γ χa 1.35, ψQ 1.5⋅, ψW 1.5⋅,( )

γ χb ξ 1.35⋅, 1.5, ψW 1.5⋅,( )

γ χc 1.35, 0, 0,( )

χ0

χ0

χ χ, χ, χ, χa, χb, χc, χl, χla, χ,
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